Lecture Summary

7.5 Maximum Likelihood Estimation

Likelihood

When the joint pdf/pff(x | θ) is regarded as a function of θ for given observations x₁,..., x_n it is called the likelihood function.

Maximum likelihood estimator

(MLE): For any given observations x we pick the $\theta \in \Omega$ that maximizes $f(x \mid \theta)$.

Frame Title

- Given X = x, the maximum likelihood estimate (MLE) will be a function of x. Notation: θ̂ = δ(X)
- ▶ Potentially confusing notation: Sometimes $\hat{\theta}$ is used for both the estimator and the estimate.
- Note: The MLE is required to be in the parameter space Ω .
- Often it is easier to maximize the log-likelihood
 L(θ) = log(f(x | θ)

- We pick the parameter that makes the observed data most likely.
- But: The likelihood is not a pdf/pf: If the likelihood of θ₁ is larger than the likelihood of θ₁, i.e. f (x | θ₂) > f (x | θ₁) it does NOT mean that θ₂ is more likely.
- Remember: θ is not random here

Examples

- Let X ~ Binomial(θ). Find the maximum likelihood estimator of θ. Say we observe X = 3, what is the maximum likelihood estimate of θ?
- Let X_1, \ldots, X_n be i.i.d. $N(\mu, \sigma^2)$.
- Find the MLE of μ when σ^2 is known.
- Find the MLE of μ and σ^2 (both unknown).
- Let X_1, \ldots, X_n be i.i.d. Uniform $[0, \theta]$, where $\theta > 0$. Find $\hat{\theta}$
- Let X_1, \ldots, X_n be i.i.d. Uniform $[\theta, \theta + 1]$. Find $\hat{\theta}$

Limitations of the MLE

- Does not always exist
- Is not always appropriate
- Is not always unique

Practice Exercises

7.5 2, 4, 6

<ロ> <四> <四> <回> <三> <三> <三> <三> <三> <三> <三> のへの 7/7