
Lecture Summary

7.3 Conjugate Prior Distributions
7.4 Bayes Estimators
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Another Example of Bayesian estimation - Normal
distribution

▶ Let X1, . . . ,Xn be a random sample from N
(
θ, σ2) where σ2

is known
▶ Let the prior distribution of θ be N

(
µ0, ν

2
0
)

where µ0 and ν2
0

are known.
▶ Show that the posterior distribution p(θ | x) is N

(
µ1, ν

2
1
)

where

µ1 =
σ2µ0 + nν2

0xn
σ2 + nν2

0
and ν2

1 =
σ2ν2

0
σ2 + nν2

0

The posterior mean is a linear combination of the prior mean µ0
and the observed sample mean.
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Normal Distribution

▶ What happens when ν2
0 → ∞ ?

▶ What happens when ν2
0 → 0 ?

▶ What happens when n → ∞ ?
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Frame Title

Conjugate Priors
Let X1,X2, . . . be a random sample from f (x | θ). A family Ψ of
distributions is called a conjugate family of prior distributions if for
any prior distribution p(θ) in ψ the posterior distribution p(θ | x) is
also in ψ
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Conjugate priors

Likelihood Prior Posterior

Bern(p) Beta(α, β) Beta(α+
∑n

i=1 xi , β + n −
∑n

i=1 xi )

Pois(λ) Gamma(α, β) Gamma(α+
∑n

i=1 xi , β + n)

Expo(λ) Gamma(α, β) Gamma(α+ n, β +
∑n

i=1 xi )

N (θ, σ2)

known σ2 N (µ0, ν0) N (σ
2µ0+nν0xn
σ2+nν0

,
σ2ν2

0
σ2+nν2

0
)
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Prior distributions

▶ The prior distribution should reflect what we know apriori
about θ

▶ For example: Beta(2, 10) puts almost all of the density below
0.5 and has a mean 2/(2 + 10) = 0.167, saying that a
prevalence of more then 50% is very unlikely

▶ Using Beta (1, 1), i.e. the Uniform (0, 1) indicates that a priori
all values between 0 and 1 are equally likely.
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Choosing a prior

▶ Deciding what prior distribution to use can be very difficult
▶ We need a distribution (e.g. Beta) and its hyperparameters

(e.g. α, β)
▶ When hyperparameters are difficult to interpret we can

sometimes set a mean and a variance and solve for parameters
E.g: What Beta prior has mean 0.1 and variance 0.12 ?

▶ If more than one option seems sensible, we perform sensitivity
analysis
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Sensitivity Analysis

We compare the posteriors we get when using the different priors.
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Sensitivity Analysis

The posterior is influenced both by sample size and the prior
variance
▶ Larger sample size ⇒ less the prior influences the posterior
▶ Larger prior variance ⇒ the less the prior influences the

posterior Prior variance: 0.011
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Improper priors

▶ Improper Prior: A "pdf" p(θ) where
∫
p(θ)dθ = ∞

▶ Used to try to put more emphasis on data and down play the
prior

▶ Used when there is little or no prior information about θ.
▶ Not clear that an improper prior is necessarily

"non-informative".
▶ Danger: We always need to check that the posterior pdf is

proper! (Integrates to 1)
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Point Estimator

▶ In principle, Bayesian inference is the posterior distribution.
▶ However, often people wish to estimate the unknown

parameter θ with a single number.
▶ A statistic: Any function of observable random variables

X1, . . . ,Xn,T = r (X1,X2, . . . ,Xn).
▶ Example: The sample mean X̄n is a statistic

Definition (Estimator/Estimate)
Suppose our observable data X1, . . . ,Xn is i.i.d. f (x | θ), θ ∈ Ω ⊂ R.
- Estimator of θ : A real valued function δ (X1, . . . ,Xn).
- Estimate of θ : δ (x1, . . . , xn), i.e. estimator evaluated at the ob-
served values.
- An estimator is a statistic and a random variable .
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Loss Function

Loss function:
A real valued function L(θ, a) where θ ∈ Ω and a ∈ R.
L(θ, a) = what we loose by using a as an estimate when θ is the
true value of the parameter.

Example Loss Functions
▶ Squared error loss function: L(θ, a) = (θ − a)2

▶ Absolute error loss function: L(θ, a) = |θ − a|
▶ Zero-one loss: L(θ, a) = 0, if θ = a, 1, otherwise.
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Bayes Estimator

Idea
Choose an estimator δ(X) so that we minimize the expected loss.
An estimator is called the Bayesian estimator of θ if for all possible
observations x of X the expected loss is minimized. For given X = x
the expected loss is

E (L(θ, a) | x) =
∫
Ω
L(θ, a)p(θ | x)dθ

Let a∗(x) be the value of a where the minimum is obtained. Then
δ∗(x) = a∗(x) is the Bayesian estimate of θ and δ∗(X) is the
Bayesian estimator of θ.
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Bayes Estimator

Theorem
The posterior mean δ∗(X) = E (θ | X) is the Bayes estimator for the
squared error loss.
mina E (L(θ, a) | x) = mina E

(
(θ − a)2 | x

)
. The mean of θ | x

minimizes this, i.e. the posterior mean.
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Consistency

Consistent estimators
An estimator δn(X) = δ (X1, . . . ,Xn) is consistent if

δ(X) P−→ θ as n → ∞

Under fairly general conditions and for a wide range of loss functions,
the Bayes estimator is consistent
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Practice Exercises

7.2 2, 4, 6
7.3 5, 10, 12, 15
7.4 5, 6, 7
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	Notice: The posterior mean is always between the prior mean and the observed proportion 0.03
	Effect of sample size and prior variance
	Def: Bayes Estimator - Minimum expected loss

