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Note that in the pdf or pmf of (T7,...,T%), the functions c(f) and w;() are
the same as in the original family although the function H(u,,...,uy) is, of course,
different from h(z). The requirement that the sample space of (T1,...,7T}) contain
an open subset of R* usually is equivalent to the requirement that n > k. We will
not prove this theorem but will only illustrate the result in a simple case.

Example 5.2.3: Suppose X|,..., X, is a random sample from a Bernoulli(p) dis-
tribution. From Example 3.3.1 (with n = 1) we see that a Bernoulli(p) distribution
is an exponential family with £ = 1,c¢(p) = (1 — p), wi1(p) = log(p/(1 — p)), and
t1{z) = z. Thus, in the previous theorem, T} = T1(Xy,..., X)) = X; + -+ + X,,.
From the definition of the binomial distribution in Section 3.1, we know that 7} has
a binomial(n, p) distribution. From Example 3.3.1 we also see that a binomial(n, p)
distribution is an exponential family with the same w;(p) and c(p) = (1 — p)"*. Thus
expression (5.2.4) is verified for this example. I

5.3 Convergence Concepts

This section treats the somewhat fanciful idea of allowing the sample size to approach
infinity and investigates the behavior of certain sample quantities as this happens.
Although the notion of an infinite sample size is a theoretical artifact, it can often
provide us with some useful approximations for the finite-sample case, since it usually
happens that expressions become simplified in the limit.

We are mainly concerned with three types of convergence, and treat them in
varying amounts of detail. (A full treatment of convergence is given in Feller (1968,
1971) and Chung (1974), for example.) In particular, we want to look at the behavior
of X, the mean of n observations, as 1 — 00.

5.3.1 Convergence in Probability

This type of convergence is one of the weaker types and, hence, is usually quite easy
to verify.

DEFINITION 5.3.1: A sequence of random variables, X1, X>,..., converges in
probability to a random variable X if, for every € > 0,

lim P(|X, —X|>e) =0, orequivalently, lim P(X, —X|<e¢=1.
n—oo n-—>o0c

The X, X5,... in Definition 5.3.1 (and the other definitions in this section) are
typically not independent and identically distributed random variables, as in a random
sample. The distribution of X, changes as the subscript changes, and the convergence
concepts discussed in this section describe different ways in which the distribution of
Xn converges to some limiting distribution as the subscript becomes large.

Frequently, statisticians are concerned with situations in which the limiting ran-
dom variable is a constant and the random variables in the sequence are sample means
(of some sort). The most famous result of this type is the following.
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THEOREM 5.3.1 (Weak Law of Large Numbers): Let X1, X5, ... be iid random
variables with EX; = u and Var X; = 02 < co. Define X, = (1/n)>_;_; X;. Then,
for every € > 0,

lim P(X, —ul <€ =1,
T =00

that is, X, converges in probability to p.
Proof:  The proof is quite simple, being a straightforward application of Chebychev’s
Inequality. We have, for every € > 0,

EX,-p? VaX o’
- 2 T o2

P(Xn—pl2e)=P(Xn—p?26e)<

€2 € ne

Hence, P(| X — pl<e = 1-P(| X, - pl>e > 1—0%/(ne?) — l,asn — oo. O

The Weak Law of Large Numbers (WLLN) quite elegantly states that, under
general conditions, the sample mean approaches the population mean as n — oo. In
fact, there are more general versions of the WLLN, where we need assume only that
the mean is finite. However, the version stated in Theorem 5.3.1 is applicable in most
practical situations. (See Exercise 5.13 for one way of weakening the hypotheses of
the WLLN.)

The property summarized by the WLLN, that a sequence of the “same” sample
quantity approaches a constant as n — 09, is known as consistency. We will examine
this property more closely in Chapter 7.

Example 5.3.1: Suppose we have a sequence X 1,Xa,... of iid random variables
with EX; = u and Var X; = 02 < oo. If we define :

can we prove a WLLN for 529 Using Chebychev’s Inequality, we have

E(S2 —o??  VarS2

P(S2-o*> o< > %

and thus, a sufficient condition that S2 converges in probability to o is that Var 57, —
0 as n — o0. Il

5.3.2 Almost Sure Convergence

A type of convergence that is stronger than convergence in probability is almost sure
convergence (sometimes confusingly known as convergence with probability 1). This
type of convergence is similar to pointwise convergence of a sequence of functions,
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except that the convergence need not occur on a set with probability O (hence the
“almost” sure).

DEFINITION 5.3.2: A sequence of random variables, X 1, X2,..., converges almost
surely to a random variable X if, for every € > 0,

P(lim |X, - X| < ¢) = 1.
n—00

Notice the similarity in the statements of Definitions 5.3.1 and 5.3.2. Al-
though they look similar, they are very different statements with Definition 5.3.2
much stronger. To understand almost sure convergence, we must recall the basic
definition of a random variable as given in Definition 1.4.1. A random variable is a
real-valued function defined on a sample space S. If a sample space S has elements
denoted by s, then X,,(s) and X (s) are all functions defined on S. Definition 5.3.2
states that X,, converges to X almost surely if the functions X, (s) converge to X (s)
for all s € S except perhaps for s € N where N C S and P(N) = 0. Example 5.3.2
illustrates almost sure convergence. Example 5.3.3 illustrates the difference between
convergence in probability and almost sure convergence.

Example 5.3.2:  Let the sample space S be the closed interval [0, 1] with the uniform
probability distribution. Define random variables Xn(s) = s+ s™ and X(s) = s. For
every s € [0,1), s — 0 as n — oo and Xn(s) — s = X(s). However, Xp(h)y=2
for every n so X, (1) does not converge to 1 = X(1). But since the convergence
occurs on the set [0, 1) and P([0, 1)) = 1, X, converges to X almost surely. [

Example 5.3.3: In this example we describe a sequence that converges in probabil-
ity, but not almost surely. Again, let the sample space S be the closed interval [0,1]
with the uniform probability distribution. Define the sequence X, X, ... as follows:

Xi(s) =s+Toy(s), Xa(s) =s+ I, 15(8),  Xu(s) =s+ 1o, 11(9),
X3(8) =s+ Iy 11(s),  Xs(s) = s+ 111 21(9),
' Xo(s) =s+ I(%J](S),

etc. Let X(s) = s. It is straightforward to see that Xp, converges to X in probability.
Asn — o0, P(| X, — X| > ¢) is equal to the probability of an interval of s values
whose length is going to 0. However, Xy does not converge to X almost surely.
Indeed, there is no value of s € S for which Xn(8) — s = X(s). For every s, the
value X, (s) alternates between the values s and s + 1 infinitely often. For example,
if s = 3, Xi(s) = 13, Xa(s) = 13, X3(5) = 3, Xa(s) = 2, Xs(s) = 13, Xe(s) = 3
etc. No pointwise convergence occurs for this sequence. Il

As might be guessed, convergence almost surely, being the stronger criterion,
implies convergence in probability. The converse is, of course, false, as Example
5.3.3 shows. However, if a sequence converges in probability, it is possible to find a
subsequence that converges almost surely (see Chung (1974)) for theorems or Exercise
5.14 for an example).
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Again, statisticians are often concerned with convergence to a constant. We now
state, without proof, the stronger analogue of the WLLN , the Strong Law of Large
Numbers (SLLN).

THEOREM 5.3.2 (Strong Law of Large Numbers): Let X 1, X2, ... be iid random

variables with EX; = p and VarX; = 02 < oo, and define X, = (1/n) S X
Then, for every € > 0,

P(lim X, —p|<e) =1,

that is, X, converges almost surely to p. 7 O

5.3.3 Convergence in Distribution

We have already encountered the idea of convergence in distribution in Chapter 2.
Remember the properties of moment generating functions (mgfs) and how their con-
vergence implies convergence in distribution (Theorem 2.3.4).

DEFINITION 5.3.3: A sequence of random variables, X1,Xs,..., converges in
distribution to a random variable X if

lim Fx (z)= Fx(z),
at all points  where Fx(z) is continuous.

Note that although we talk of a sequence of random variables converging in
distribution, it is really the cdfs that converge, not the random variables. In this very
fundamental way convergence in distribution is quite different from convergence in
probability or convergence almost surely.

We again want to look at the large-sample behavior of the sample mean and, in
particular, investigate its limiting distribution. We begin by proving one of the most
startling theorems in statistics, the Central Limit Theorem (CLT).

THEOREM 5.3.3 (Central Limit Theorem): Let X;,X,,...bea sequence of iid
random variables whose mgfs exist in a neighborhood of O (that is, M x,(t) exists for
|t| < h, for some positive h). Let EX; = p and Var X; = o2 > 0. (Both y and o?
are finite since the mgf exists.) Define X,, = (1/n) Yoiy Xi. Let G,(z) denote the
cdf of /(X ,, — p)/o. Then, for any z, —co < z < oo,

- _
1 2
lim G,(z :/ e V24 ,
JAm G, (z) T Y
that is, \/n(X,, — ,u) /o has a limiting standard normal distribution. O

Before we prove this theorem (the proof is somewhat anticlimactic) we first look
at its implications. Starting from virtually no assumptions (other than independence
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and finite variances), we end up with normality! The point here is that normality comes
from sums of “small” (finite variance), independent disturbances. The assumption of
finite variances is essentially necessary for convergence to normality. Although it can
be relaxed somewhat, it cannot be eliminated. (Recall Example 5.2.2, dealing with
the Cauchy distribution, where there is no convergence to normality.)

While reveling in the wonder of the CLT, it is also useful to reflect on its Iim-
itations. Although it gives us a useful general approximation, we have no way of
knowing how good this approximation is. In fact, the goodness of the approxima-
tion is a function of the original distribution, and so must be checked case by case.
Furthermore, with the current availability of cheap, plentiful computing power, the
importance of approximations like the Central Limit Theorem is somewhat lessened.
However, despite its limitations, it is still a marvelous result.

Proof of Theorem 5.3.3:  We will show that, for [t| < h, the mgf of VX, — w/o

converges to et/ 2 the mgf of a n(0, 1) random variable.
Define Y; = (X; — p)/o, and let My (t) denote the common mgf of the ¥;s,
which exists for |t| < oh and is given by Theorem 2.3.5. Since

VaXn—p) _ 1
5.3.1 yoon - Y;,
(5.3.1) - 7 ;
we have, from the properties of mgfs (see Theorems 2.3.5 and 4.6.3)

(532) M sx. - we® = Msz v,/ ym®
t
-z ()

(o ()"

We now expand My (t/+/n) in a Taylor series (power series) around 0. (See Definition
7.4.2.) We have

(Theorem 2.3.5)

o0 k
(5.3.3) My (%) = ZM@(O)%‘/,—H—)—,
k=0 )

where MP(0) = (d*/dt*) My (t)|,—,- Since the mgfs exist for \tk\< h, the power
series expansion is valid if ¢ < \/noh.

Using the facts that M§9) =1, M§,1) = 0, and Mg) = 1 (by construction, the
mean and variance of Y are 0 and 1), we have &

2
30 ()= (),

(Theorem 4.6.3)
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where Ry is the remainder term in the Taylor expansion,

Ry (\/_) ZM"“)(O)(t/‘/_)k,

An application of Taylor’s Theorem (Theorem 7.4.1) shows that, for fixed ¢ # 0, we
have

Ry (t/v/n)
n-—>oo (t/\/_)z

Since t is fixed, we also have

Ry (t/\/—) g oy
(5.3.5) nl__,ngo NG: = nlgréonRy (\/ﬁ> =0,

and (5.3.5) is also true at t = O since Ry (0/+/n) = 0. Thus, for any fixed ¢, we can
write

o0 o () = 4 o ()]

= lim 1+l tz—;—nR t 1"
= |t (7R (7))

.
=t

by an application of Lemma 2.3.1, where we set a,, = (t2/2) + nRy(t/1/n). (Note
that (5.3.5) implies that a,, — t2/2 as n — 00.) Since et’/? is the mgf of the n(0, 1)
distribution, the theorem is proved. O

The Central Limit Theorem is valid in much more generality than is stated in
Theorem 5.3.3 (see the Miscellanea section for a discussion). In particular, all of the
assumptions about mgfs are not needed—the use of characteristic functions (Chapter
2 Miscellanea) can replace them. We state the next theorem without proof. It is a
version of the Central Limit Theorem that is general enough for almost all statistical
purposes. Notice that the only assumption on the parent distribution is that it has
finite variance.

THEOREM 5.3.4 (Stronger Form of the Central Limit Theorem): Let X;, X>,..
be a sequence of iid random variables with EX; = p and 0 < Var X; = o2 < oo.
Define X, = (1/n) 3.1, X;. Let G,(z) denote the cdf of \/n(X, — p)/o. Then,
for any z, —o0 < x < 00,

o1

lim G,(z) =/ eV dy,
n—oo —00 ™
that is, v/n(X,, — p)/c has a limiting standard normal distribution. O
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The proof is almost identical to that of Theorem 5.3.3, except that characteristic
functions are used instead of mgfs. Since the characteristic function of a distribution
always exists, it is not necessary to mention them in the assumptions of the theorem.
The proof is more delicate, however, since functions of complex variables must be
dealt with. Details can be found in Chung (1974) or Feller (1971).

It is also possible to prove this theorem without recourse to characteristic func-
tions, using only elementary arguments. By doing careful analysis and being clever
with Taylor series expansions, it can be shown directly that probabilities involving
\/ﬁ(j(_n — p)/o converge to normal probabilities (Brown, 1988). (Brown’s proof is
similar in spirit to, but much more involved than, the proof of the Demoivre-Laplace
Limit Theorem given in Feller (1968). The Demoivre-Laplace Limit Theorem is a
special case of the CLT, that binomials converge to normals as n — 00.)

The Central Limit Theorem provides us with an all-purpose approximation (but,
remember the warning about the goodness of the approximation). In practice, it can
always be used for a first, rough calculation.

Example 5.3.4:  Suppose Xj,..., X, are a random sample from a negative bino-
mial(r, p) distribution. Recall that

gx - rd —p)’ Vary — 14 —p

P p?

?

and the Central Limit Theorem tells us that

VX — r(1 - p)/p)

Vr(l—p)/p?

is approximately n(0, 1). The approximate probability calculations are much easier
than the exact calculations. For example, if r = 10, p = % and n = 30, an exact
calculation would be

" 30
PX<11)=P (ZXZ- < 330)
=1

_ % 300+z—-1Y\ (1 30 1\° > X is negative
- ~ z 2 2 binomial(nr, p)
— 8916,

which is a very difficult calculation. (Note that this calculation is difficult even with
the aid of a computer—the magnitudes of the factorials cause great difficulty. Try it
if you don’t believe it!) The CLT gives us the approximation

V30(X — 10) < V30(11 - 10)
V20 - V20

P(an)zp(
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O ~ P(Z < 1.2247)
= .8888. |

An approximation tool that can be used in conjunction with the Central Limit
Theorem is known as Slutsky’s Theorem.

THEOREM 5.3.5 (Slutsky’s Theorem): If X,, — X in distribution and Y, — a,
a constant, in probability, then

a. Y, X, — aX in distribution.
b. X,, + Y, — X + a in distribution. O

The proof of Slutsky’s Theorem is omitted, since it relies on a characterization
of convergence in distribution that we have not discussed. A typical application is
illustrated by the following example.

Example 5.3.5: Suppose that

_\Lﬁ(__‘}i:_lﬂ_) —n(0,1)

but the value of ¢ is unknown. We have seen in Example 5.3.1 that, if limy, oo Var S2 v
O = 0, then S2 — o2 in probability. By Exercise 5.15, 0//S,, — 1 in probability. Hence,
Slutsky’s Theorem tells us

\/ﬁ(yn - /‘L) _ _q_\/ﬁ(_X—n - ,U) -
— s "3, — n(0, 1). Il

5.4 Sampling from the Normal Distribution

This section deals with the properties of sample quantities drawn from a normal
population—still one of the most widely used statistical models. Sampling from a
normal population leads to many useful properties of sample statistics, and also to
many well-known sampling distributions.

5.4.1 Properties of the Sample Mean and Variance

We have already seen how to calculate the means and variances of X and $? in
general. Now, under the additional assumgt_ion of normality, we can derive their full
distributions, and more. The properties of X and 52 are summarized in the following
theorem.

THEOREM 5.4.1: Let Xy,...,X, be arandom sample from a n(x, o?) distribution,
and let X = A/, X; and S =[1/(n — DI (X; — X)?. Then
a. X and S? are independent random variables,

@



