Lecture Summary

- 6.1 Introduction
- 6.2 The Law of Large Numbers.

Sample Mean

Definition (Sample mean)

Let X_1, \ldots, X_n be random variables. Their average

$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$$

is called their sample mean.

• What happens when
$$n \to \infty$$
?

Properties of the sample mean

Theorem (Mean and variance of the sample mean) Let $X_1, ..., X_n$ be a random sample from a distribution with mean μ and variance σ^2 . Then $E(\overline{X}_n) = \mu$, and $Var(\overline{X}_n) = \sigma^2/n$.

Inequalities

Theorem (Markov Inequality)

Let X be a random variable such that $P(X \ge 0) = 1$. Then for every real number t,

$$P(X \ge t) \le \frac{E(X)}{t}.$$

Theorem (Chebysev Inequality)

Let X be a random variable for which Var(X) exists. Then for every number t > 0,

$$P(|X - E(X)| \ge t) \le rac{Var(X)}{t^2}.$$

Convergence in probability

Arithmetic convergence	Convergence in probability
Series S_n of numbers converges to	Series X_n of random variables
number ℓ	converges to number $lpha$
$\lim_{n\to\infty}S_n=\ell \text{ or } S_n \to \ell$	$X_n \xrightarrow{p} \alpha$
S_n gets arbitrarily close to ℓ	The probability distribution of X
	gets more and more concentrated
	around $lpha$
$\forall \epsilon > 0, \ \exists n_0 : \forall n > n_0 S_n - \ell < \epsilon$	$\forall \epsilon > 0,$
	$ $ $\lim_{n\to\infty} P(X_n - \alpha < \epsilon) = 1$

Weak Law of Large Numbers

Theorem (Weak Law of Large Numbers)

Suppose that X_1, \ldots, X_n form a random sample from a distribution (i.e., X_i, \ldots, X_n are i.i.d.) for which the mean is μ and the variance is finite. Let $\overline{X_n}$ denote the sample mean. Then

$$\overline{X_n} \xrightarrow{p} \mu$$

Theorem (Continuous Functions of Random Variables) . If $\overline{Z_n} \xrightarrow{p} b$, and if g(z) is a function that is continuous at z = b, then $g(Z_n) \xrightarrow{p} g(b)$

Example

- You are doing a poll on "ratio of people who believe it was a proper penalty".
- True ratio: p, estimate $\overline{X_n}$
- No guarantee for finding exactly p, so

$$P(|\bar{X_n}-p| \ge 0.01) \le 0.05$$

Apply Chebysev inequality with t = 0.01: n = 50,000.
Apply CLT: ?