Lecture Summary

6.1 Introduction
6.2 The Law of Large Numbers.

Sample Mean

Definition (Sample mean)
Let $X_{1}, \ldots X_{n}$ be random variables. Their average

$$
\bar{X}_{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

is called their sample mean.

- What happens when $n \rightarrow \infty$?

Properties of the sample mean

Theorem (Mean and variance of the sample mean)
Let $X_{1}, \ldots X_{n}$ be a random sample from a distribution with mean μ and variance σ^{2}. Then $E\left(\bar{X}_{n}\right)=\mu$, and $\operatorname{Var}\left(\bar{X}_{n}\right)=\sigma^{2} / n$.

Inequalities

Theorem (Markov Inequality)
Let X be a random variable such that $P(X \geq 0)=1$. Then for every real number t,

$$
P(X \geq t) \leq \frac{E(X)}{t}
$$

Theorem (Chebysev Inequality)
Let X be a random variable for which $\operatorname{Var}(X)$ exists. Then for every number $t>0$,

$$
P(|X-E(X)| \geq t) \leq \frac{\operatorname{Var}(X)}{t^{2}}
$$

Convergence in probability

Arithmetic convergence	Convergence in probability Series S_{n} of numbers converges to number ℓSeries X_{n} of random variables converges to number α
$\lim _{n \rightarrow \infty} S_{n}=\ell$ or $S_{n} \rightarrow \ell$	$X_{n} \xrightarrow{P} \alpha$
S_{n} gets arbitrarily close to ℓ	The probability distribution of X gets more and more concentrated around α
$\forall \epsilon>0, \exists n_{0}: \forall n>n_{0}\left\|S_{n}-\ell\right\|<\epsilon$	$\forall \epsilon>0$, $\lim _{n \rightarrow \infty} P\left(\left\|X_{n}-\alpha\right\|<\epsilon\right)=1$

Weak Law of Large Numbers

Theorem (Weak Law of Large Numbers)
Suppose that X_{1}, \ldots, X_{n} form a random sample from a distribution (i.e., X_{i}, \ldots, X_{n} are i.i.d.) for which the mean is μ and the variance is finite. Let $\overline{X_{n}}$ denote the sample mean. Then

$$
\overline{X_{n}} \xrightarrow{p} \mu
$$

Theorem (Continuous Functions of Random Variables)
. If $\overline{Z_{n}} \xrightarrow{p} b$, and if $g(z)$ is a function that is continuous at $z=b$, then $g\left(Z_{n}\right) \xrightarrow{p} g(b)$

Example

- You are doing a poll on "ratio of people who believe it was a proper penalty".
- True ratio: p, estimate $\overline{X_{n}}$
- No guarantee for finding exactly p, so

$$
P\left(\left|\bar{X}_{n}-p\right| \geq 0.01\right) \leq 0.05
$$

- Apply Chebysev inequality with $t=0.01: \mathrm{n}=50,000$.
- Apply CLT: ?

