Lecture Summary

5.5 The Negative Binomial Distributions5.6 The Normal Distributions

5.7 ONLY: The Exponential Distributions

Negative Binomial distributions

Definition (Negative Binomial distribution)

A random variable X has the Negative Binomial distribution with parameters r and p if it has the pf

$$f(x|p,r) = \begin{cases} \binom{r+x-1}{x} p^r (1-p)^x & x = 0, 1, 2, \dots, \\ 0 & otherwise. \end{cases}$$

where 0 and <math>r is a positive integer.

Say we have an infinite sequence of Bernoulli trials with parameter p, and X = number of "failures" before the r th "success". Then $X \sim NegBinomial(r, p)$.

•
$$E(X) = \frac{r(1-p)}{p}$$

• $Var(X) = \frac{r(1-p)}{p^2}$
• MGF:
 $\psi(t) = (\frac{p}{1-(1-p)e^t})^r$

Geometric distributions

Definition (Geometric Distribution)

A r.v. X has the Geometric distribution with parameter p a if the probability function (pf) of X is

$$f(x|p) = \begin{cases} f(x|p) = p(1-p)^x & x = 0, 1, \dots n \\ 0 & otherwise \end{cases}$$

An experiment with two outcomes: "success", "failure", X = number of failures before the first success.

▶ Parameter space
$$p \in [0, 1]$$
.

•
$$E(X) = \frac{1-p}{p}$$

• $Var(X) = \frac{1-p}{p^2}$.

► MGF:

$$\psi(t) = \left(\frac{p}{1 - (1 - p)e^t}\right)$$

Properties of Geometric distributions

Theorem (Sum of Geometric is Negative Binomial) If $X_1, ..., X_r$ are *i.i.d.* and each $X_i \sim Geometric(p)$ then $X = X_1 + \cdots + X_r \sim NegBinomial(r, p)$.

Theorem (Geometric distributions are memoryless:) Let X have the geometric distribution with parameter p, and let $k \ge 0$. Then for every integer $t \ge 0$,

$$P(X = k + t | X \ge k) = P(X = t).$$

The Exponential Distributions

Definition (Exponential Distributions)

Let $\beta > 0$. A random variable X follows the *exponential distribution* with parameter β if it has a continuous distribution with pf:

$$f(x|eta) = \left\{egin{array}{cc} eta e^{-eta x} & x > 0, \ 0 & otherwise \end{array}
ight.$$

where $\beta > 0$ • $E(X) = \frac{1}{\beta}$ • $Var(X) = \frac{1}{\beta^2}$ • MGF: $\psi(t) = \frac{\beta}{\beta - t}$ for $t < \beta$

Properties of the Exponential Distributions

Theorem (Exponential distributions are memoryless)

Let X have the exponential distribution with parameter β , and let t > 0. Then for every number h > 0,

$$P(X \ge t + h | X \ge t) = P(X \ge h)$$

Theorem (Minimum of exponentials is exponential)

Suppose $X_1, X_2, ..., X_n$ each follow an exponential distribution with parameter β . Then the distribution of $Y = min\{X_1, ..., X_n\}$ will be the exponential distribution with parameter $n\beta$.

The Normal Distribution

.

Standard normal

$$\mathcal{N}(0,1): f_X(x) = rac{1}{\sigma\sqrt{2\pi}} \exp\left(-rac{x^2}{2}\right)$$

Computing Probabilities for Normal r.v.s

- The cdf for a normal distribution cannot be expressed in closed form and is evaluated using numerical approximations.
- Φ(x) is the cdf of the standard normal, and it is tabulated in the back of most statistical books. Many calculators and programs such as R, Matlab, Excel etc. can calculate Φ(x)

Theorem

Linear transformation of a normal is still normal] If $X \sim N(\mu, \sigma^2)$ and Y = aX + b then $Y \sim N(a\mu + b, a^2\sigma^2)$

• Let *F* be the cdf of *X*, where $X \sim N(\mu, \sigma^2)$.

• Then
$$F(x) = \Phi(\frac{x-\mu}{\sigma})$$

• $F^{-1}(p) = \mu + \sigma \Phi^{-1}(p)$

Linear Combinations of Independent Normals

Theorem (Linear Combinations of Independent Normals is a Normal.)

Let X_1, \ldots, X_k be independent random variables and $X_i \sim N(\mu_i, \sigma_i^2)$ for $i = 1, \ldots, k$. Then $X_1 + \cdots + X_k \sim N(\mu_1 + \cdots + \mu_k, \sigma_1^2 + \cdots + \sigma_k^2)$. Also, if a_1, \ldots, a_k , b are constants where at least one a_i is not zero, then $a_1X_1 + \cdots + a_kX_k + b \sim N(\sum_{i=1}^k a_i\mu_i + b, \sum_{i=1}^k a_i^2\sigma_i^2)$.

- Assume X_1, \ldots, X_n are a random sample from $N(\mu, \sigma^2)$.
- What is the distribution of the sample mean, $\bar{X}_n = \frac{1}{n}(X_1 + \dots + X_n)?$

Practice Exercises

5.26, 9,10, 135.44,5, 9, 105.63, 4, 10, 145.76, 105.1111,12