Lecture Summary

5.5 The Negative Binomial Distributions
5.6 The Normal Distributions
5.7 ONLY: The Exponential Distributions

Negative Binomial distributions

Definition (Negative Binomial distribution)

A random variable X has the Negative Binomial distribution with parameters r and p if it has the pf

$$
f(x \mid p, r)= \begin{cases}\binom{r+x-1}{x} p^{r}(1-p)^{x} & x=0,1,2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

where $0<p<1$ and r is a positive integer.
Say we have an infinite sequence of Bernoulli trials with parameter p, and $X=$ number of "failures" before the r th "success". Then $X \sim \operatorname{NegBinomial}(r, p)$.

- $E(X)=\frac{r(1-p)}{p}$
- $\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}$
- MGF:

$$
\psi(t)=\left(\frac{p}{1-(1-p) e^{t}}\right)^{r}
$$

Geometric distributions

Definition (Geometric Distribution)

A r.v. X has the Geometric distribution with parameter p a if the probability function (pf) of X is

$$
f(x \mid p)= \begin{cases}f(x \mid p)=p(1-p)^{x} & x=0,1, \ldots n \\ 0 & \text { otherwise }\end{cases}
$$

- An experiment with two outcomes: "success", "failure", $\mathrm{X}=$ number of failures before the first success.
- Parameter space $p \in[0,1]$.
- $E(X)=\frac{1-p}{p}$
- $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$.
- MGF:

$$
\psi(t)=\left(\frac{p}{1-(1-p) e^{t}}\right)
$$

Properties of Geometric distributions

Theorem (Sum of Geometric is Negative Binomial)
If X_{1}, \ldots, X_{r} are i.i.d. and each $X_{i} \sim \operatorname{Geometric}(p)$ then $X=X_{1}+$ $\cdots+X_{r} \sim \operatorname{NegBinomial}(r, p)$.

Theorem (Geometric distributions are memoryless:)
Let X have the geometric distribution with parameter p, and let $k \geq 0$. Then for every integer $t \geq 0$,

$$
P(X=k+t \mid X \geq k)=P(X=t) .
$$

The Exponential Distributions

Definition (Exponential Distributions)

Let $\beta>0$. A random variable X follows the exponential distribution with parameter β if it has a continuous distribution with pf :

$$
f(x \mid \beta)= \begin{cases}\beta e^{-\beta x} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

where $\beta>0$

- $E(X)=\frac{1}{\beta}$
- $\operatorname{Var}(X)=\frac{1}{\beta^{2}}$
- MGF:

$$
\psi(t)=\frac{\beta}{\beta-t} \text { for } t<\beta
$$

Properties of the Exponential Distributions

Theorem (Exponential distributions are memoryless)
Let X have the exponential distribution with parameter β, and let $t>0$. Then for every number $h>0$,

$$
P(X \geq t+h \mid X \geq t)=P(X \geq h)
$$

Theorem (Minimum of exponentials is exponential)
Suppose $X_{1}, X_{2}, \ldots, X_{n}$ each follow an exponential distribution with parameter β. Then the distribution of $Y=\min \left\{X_{1}, \ldots, X_{n}\right\}$ will be the exponential distribution with parameter $n \beta$.

The Normal Distribution

Standard normal

$$
\mathcal{N}(0,1): f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

Normal with mean μ and variance σ^{2}

$$
\mathcal{N}(0,1): f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right)
$$

Computing Probabilities for Normal r.v.s

- The cdf for a normal distribution cannot be expressed in closed form and is evaluated using numerical approximations.
- $\Phi(x)$ is the cdf of the standard normal, and it is tabulated in the back of most statistical books. Many calculators and programs such as R , Matlab, Excel etc. can calculate $\Phi(x)$
- $\Phi(-x)=1-\Phi(x)$
- $\Phi^{-1}(p)=-\Phi^{-1}(1-p)$

Theorem

Linear transformation of a normal is still normal] If $X \sim N\left(\mu, \sigma^{2}\right)$ and $Y=a X+b$ then $Y \sim N\left(a \mu+b, a^{2} \sigma^{2}\right)$

- Let F be the cdf of X, where $X \sim N\left(\mu, \sigma^{2}\right)$.
- Then $F(x)=\Phi\left(\frac{x-\mu}{\sigma}\right)$
- $F^{-1}(p)=\mu+\sigma \Phi^{-1}(p)$

Linear Combinations of Independent Normals

Theorem (Linear Combinations of Independent Normals is a Normal.)
Let X_{1}, \ldots, X_{k} be independent random variables and $X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$ for $i=1, \ldots, k$. Then $X_{1}+\cdots+X_{k} \sim N\left(\mu_{1}+\cdots+\mu_{k}, \sigma_{1}^{2}+\cdots+\sigma_{k}^{2}\right)$. Also, if a_{1}, \ldots, a_{k}, b are constants where at least one a_{i} is not zero, then $a_{1} X_{1}+\cdots+a_{k} X_{k}+b \sim N\left(\sum_{i=1}^{k} a_{i} \mu_{i}+b, \sum_{i=1}^{k} a_{i}^{2} \sigma_{i}^{2}\right)$.

- Assume $X_{1}, \ldots X_{n}$ are a random sample from $N\left(\mu, \sigma^{2}\right)$.
- What is the distribution of the sample mean,

$$
\bar{X}_{n}=\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right) ?
$$

Practice Exercises

5.2	$6,9,10,13$
5.4	$4,5,9,10$
5.6	$3,4,10,14$
5.7	6,10
5.11	11,12

