Lecture Summary

5.2 The Bernoulli and Binomial Distributions

- SKIP: [5.3] The Hypergeometric Distributions
5.4 The Poisson Distributions

Bernoulli distributions

Definition (Bernoulli distribution)

A r.v. X has the Bernoulli distribution with parameter p if $P(X=$ $1)=p$ and $P(X=0)=1-p$. The probability function (pf) of X is

$$
f(x \mid p)= \begin{cases}p^{\times}(1-p)^{1-x} & x=0,1 \\ 0 & \text { otherwise }\end{cases}
$$

- An experiment with two outcomes: "success", "failure", $\mathrm{X}=$ number of successes.
- Parameter space: $p \in[0,1]$.
- $E(X)=p, \operatorname{Var}(X)=p(1-p)$.
- MGF: $\psi(t)=E\left(e^{t X}\right)=p e^{t}+(1-p)$.
- CDF:

$$
F(x)= \begin{cases}0, & x<0 \\ 1-p, & 0 \leq x<1 \\ 1 & x \geq 1\end{cases}
$$

Binomial distributions

A r.v. X has the Binomial distribution with parameters n and p a if the probability function (pf) of X is

$$
f(x \mid p)= \begin{cases}\binom{n}{x} p^{x}(1-p)^{n-x} & x=0,1, \ldots, n \\ 0 & \text { otherwise }\end{cases}
$$

- n repetitions of an experiment with two outcomes: "success", "failure", $\mathrm{X}=$ number of successes.
- Parameter space: n positive integer, $p \in[0,1]$.
- $E(X)=n p, \operatorname{Var}(X)=n p(1-p)$.
- CDF:

$$
F(x)= \begin{cases}0, & x<0 \\ 1-p, & 0 \leq x<1 \\ 1 & x \geq 1\end{cases}
$$

Poisson Distributions

Definition (Poisson Distributions)

Let $\lambda>0$. A random variable X follows the Poisson distribution with mean λ if the p.m.f. of X is as follows:

$$
f(x \mid \lambda)= \begin{cases}\frac{e^{-\lambda} \lambda^{x}}{x!} & x=0,1,2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

- Parameter space: $\lambda \in[0, \infty)$.
- $E(X)=\lambda, \operatorname{Var}(X)=\lambda$

Poisson Distributions

The Poisson distribution is useful for modeling uncertainty in counts / arrivals.

Examples:

- How many calls arrive at a switch board in one hour?
- How many busses pass while you wait at the bus stop for 10 \min ?
- How many customers will enter a store in 15 minutes?

Properties of the Poisson

Theorem (Sum of Poissons is a Poisson.)
Let $X_{1}, \ldots X_{k}$ are independent and if X_{i} has the Poisson distribution with mean $\lambda_{i}(i=1, \ldots, k)$, then the sum $X_{1}+\cdots+X_{k}$ has the Poisson distribution with mean $\lambda_{1}+\cdots+\lambda_{k}$.

Theorem (Approximation to the Binomial)
For each integer n and each $0<p<1$, let $f(x \mid n, p)$ denote the $p f$ of the Binomial distribution with parameters n and p, and let $f(x \mid \lambda)$ denote the pf of the Poisson distribution with mean λ. Let $\left\{p_{n}\right\}_{1}^{\infty}$ be a sequence of numbers between 0 and 1 such that $\lim _{n \rightarrow \infty}=\lambda$. Then

$$
\lim _{n \rightarrow \infty} f_{X_{n}}\left(x \mid n, p_{n}\right)=f(x \mid \lambda)
$$

When the value of n is large, and the value of p is very small, the Poisson with mean $n p$ is a good approximation for the Binomial with parameters n and p.

Question

- We need to test 1000 people for a rare disease (affects two in 1000 people).
- Each test requires a small amount of blood, and it is guaranteed to detect the disease if it is anywhere in the blood.
- Strategy 1: Test 1000 people
- Strategy 2: Split in 10 groups of 100, combine their bloods and test them. (10 tests). If any of them tests positive, test all people in that group.
- What is the expected number of tests for Strategy 2?

Question

Hints

- Let Z_{i} be the number of people in group i that have the disease, $i=1, \ldots, 10$.
- What is the distribution of each Z_{i} ?
- Let $Y_{i}=0$ if group i tests positive, $Y_{i}=1$ otherwise.
- What is the distribution of Y_{i} ?
- Let $Y=Y_{1}+\cdots+Y_{10}$ be the number of groups where every individual has to be tested.
- What is the distribution of Y ?
- How many tests are we going to need as a function of the value of Y ?
- What is the expected value of the number of tests we will need?

Question

Hints (1)

- Let Z_{i} be the number of people in group i that have the disease, $i=1, \ldots, 10$.
- What is the distribution of each Z_{i} ?
- $Z_{i} \sim \operatorname{Binomial}(100,0.002)$
- Let $Y_{i}=1$ if group i tests positive, $Y_{i}=0$ otherwise.
- What is the distribution of Y_{i} ?
- Y_{i} follows a Bernoulli distribution (is either 0 or 1). $P\left(Y_{i}\right)=$ $1=P\left(Z_{i}>0\right)=1-P\left(Z_{i}=0\right)=1-(1-0.002)^{100}=0.181$

Question

Hints

- Let $Y=Y_{1}+\cdots+Y_{10}$ be the number of groups where every individual has to be tested.
- What is the distribution of Y ?
- $Y \sim \operatorname{Binomial}(10,0.181)$
- How many tests are we going to need as a function of the value of Y ?
- $X=10+100 Y$
- What is the expected value of the number of tests we will need?
- $E(X)=E(10+100 Y)=10+100 E(Y)=$ $10+100 * 10 * 0.181=191$

