Lecture Summary

- 4.4 Moments
- 5.6 The Normal Distributions

Moments and Central Moments

Definition (Moments and Central Moments)

Let X be a random variable and k be a positive integer. The expectation $E(X^k)$ is the k-th moment of X. The expectation $E[(X - E(X))^k]$ is the k-th central moment of X.

- The first moment is the mean: $\mu = E(X^1)$.
- The first central moment is zero: $E[(X - E(X))^{1}] = E(X - \mu) = E(X) - E(X) = 0$
- The second central moment is the variance: $E[(X - E(X))^2] = Var(X)$

(日) (四) (日) (日) (日) (日)

Moment Generating Functions

Definition (Moment Generating Functions) Let X be a random variable. The function

$$\psi(t) = E(e^{tX}), t \in R$$

is called the moment generating function (m.g.f.) of X.

Theorem

Let X be a random variables whose m.g.f. $\psi(t)$ is finite for t in an open interval around zero. Then the n - th moment of X is finite, for n = 1, 2, ..., and

$$E(X^n) = \frac{d^n \psi(t)}{dt^n}|_{t=0}$$

Properties of Moment Generating Functions

$$\blacktriangleright \ \psi(aX+bt)=e^{bt}\psi_X(at).$$

• Let $Y = \sum_{i=1}^{n} X_i$ where X_1, \ldots, X_n are independent random variables with m.g.f $\psi_i(t)$ for $i = 1, \ldots, n$. Then

$$\psi_{Y}(t) = \prod_{i=1}^{n} X_{i}$$

• Let X and Y be two random variables with m.g.f.'s $\psi_X(t)$ and $\psi_Y(t)$. If the m.g.f.'s are finite and $\psi_X(t) = \psi_Y(t)$ for all values of t in an open interval around zero, then X and Y have the same distribution.

Finding the p.d.f's for sums of random variables

► Let $Y = \sum_{i=1}^{n} X_i$ where X_1, \ldots, X_n are independent random variables with m.g.f $\psi_i(t)$ for $i = 1, \ldots, n$. Then

$$\psi_{\mathbf{Y}}(t) = \prod_{i=1}^{n} \psi_i(t)$$

Theorem

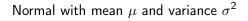
If X_1 and X_2 are independent random variables, and if X_i has the binomial distribution with parameters n_i and p (i = 1, 2), then $X_1 + X_2$ has the binomial distribution with parameters $n_1 + n_2$ and p.

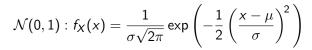
The Normal Distribution

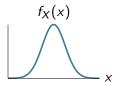
.

Standard normal

$$\mathcal{N}(0,1): f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$







Computing Probabilities for Normal r.v.s

- The cdf for a normal distribution cannot be expressed in closed form and is evaluated using numerical approximations.
- Φ(x) is the cdf of the standard normal, and it is tabulated in the back of most statistical books. Many calculators and programs such as R, Matlab, Excel etc. can calculate Φ(x)

Theorem

Linear transformation of a normal is still normal] If $X \sim N(\mu, \sigma^2)$ and Y = aX + b then $Y \sim N(a\mu + b, a^2\sigma^2)$

• Let *F* be the cdf of *X*, where $X \sim N(\mu, \sigma^2)$.

• Then
$$F(x) = \Phi(\frac{x-\mu}{\sigma})$$

• $F^{-1}(p) = \mu + \sigma \Phi^{-1}(p)$

Practice Exercises

4.4 1,2 5.6 3, 4, 10, 14