Lecture Summary

4.4 Moments
5.6 The Normal Distributions

Moments and Central Moments

Definition (Moments and Central Moments)

Let X be a random variable and k be a positive integer.
The expectation $E\left(X^{k}\right)$ is the k -th moment of X. The expectation $E\left[(X-E(X))^{k}\right]$ is the k -th central moment of X.

- The first moment is the mean: $\mu=E\left(X^{1}\right)$.
- The first central moment is zero:

$$
E\left[(X-E(X))^{1}\right]=E(X-\mu)=E(X)-E(X)=0
$$

- The second central moment is the variance:

$$
E\left[(X-E(X))^{2}\right]=\operatorname{Var}(X)
$$

Moment Generating Functions

Definition (Moment Generating Functions)

Let X be a random variable. The function

$$
\psi(t)=E\left(e^{t X}\right), t \in R
$$

is called the moment generating function (m.g.f.) of X.
Theorem
Let X be a random variables whose m.g.f. $\psi(t)$ is finite for t in an open interval around zero. Then the $n-t h$ moment of X is finite, for $n=1,2, \ldots$, and

$$
E\left(X^{n}\right)=\left.\frac{d^{n} \psi(t)}{d t^{n}}\right|_{t=0}
$$

Properties of Moment Generating Functions

- $\psi(a X+b t)=e^{b t} \psi_{X}(a t)$.
- Let $Y=\sum_{i=1}^{n} X_{i}$ where X_{1}, \ldots, X_{n} are independent random variables with m.g.f $\psi_{i}(t)$ for $i=1, \ldots, n$. Then

$$
\psi_{Y}(t)=\prod_{i=1}^{n} X_{i}
$$

- Let X and Y be two random variables with m.g.f.'s $\psi_{X}(t)$ and $\psi_{Y}(t)$. If the m.g.f.'s are finite and $\psi_{X}(t)=\psi_{Y}(t)$ for all values of t in an open interval around zero, then X and Y have the same distribution.

Finding the p.d.f's for sums of random variables

- Let $Y=\sum_{i=1}^{n} X_{i}$ where X_{1}, \ldots, X_{n} are independent random variables with m.g.f $\psi_{i}(t)$ for $i=1, \ldots, n$. Then

$$
\psi_{Y}(t)=\prod_{i=1}^{n} \psi_{i}(t)
$$

Theorem
If X_{1} and X_{2} are independent random variables, and if X_{i} has the binomial distribution with parameters n_{i} and $p(i=1,2)$, then $X_{1}+$ X_{2} has the binomial distribution with parameters $n_{1}+n_{2}$ and p.

The Normal Distribution

Standard normal

$$
\mathcal{N}(0,1): f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

Normal with mean μ and variance σ^{2}

$$
\mathcal{N}(0,1): f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right)
$$

Computing Probabilities for Normal r.v.s

- The cdf for a normal distribution cannot be expressed in closed form and is evaluated using numerical approximations.
- $\Phi(x)$ is the cdf of the standard normal, and it is tabulated in the back of most statistical books. Many calculators and programs such as R , Matlab, Excel etc. can calculate $\Phi(x)$
- $\Phi(-x)=1-\Phi(x)$
- $\Phi^{-1}(p)=-\Phi^{-1}(1-p)$

Theorem

Linear transformation of a normal is still normal] If $X \sim N\left(\mu, \sigma^{2}\right)$ and $Y=a X+b$ then $Y \sim N\left(a \mu+b, a^{2} \sigma^{2}\right)$

- Let F be the cdf of X, where $X \sim N\left(\mu, \sigma^{2}\right)$.
- Then $F(x)=\Phi\left(\frac{x-\mu}{\sigma}\right)$
- $F^{-1}(p)=\mu+\sigma \Phi^{-1}(p)$

Practice Exercises

$\begin{array}{ll}4.4 & 1,2 \\ 5.6 & 3,4,10,14\end{array}$

