Lecture Summary

3.1 Discrete Random Variables
3.4 Bivariate Distributions

3.5 Marginal Distributions

3.6 Conditional Distributions
4.1 Expectations

Some slides from MIT open courseware
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https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041-probabilistic-systems-analysis-and-applied-probability-fall-2010/

Binomial Distribution

Now imagine you toss the fair coin 5 times. Some possible
outcomes are 00000, 1000, 01100 etc. Let X be the number of
successes (heads) after the 5 times. Then X follows a Binomial
distribution with parameters (5, 0.5).

Definition

The binomial distribution with parameters n and p is the discrete
probability distribution of the number of successes in a sequence of
n independent experiments, each with a binary outcome: success
(with probability p) or failure (with probability g = 1 — p). The pmf
of the binomial distribution is

Px(x) = (

n

)px(l—p)lx forx=0,...,n,
X
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Geometric distribution

Now imagine you toss the fair coin until you get heads. times.
Some possible outcomes are 1, 01, 0001, 0...1, etc. Let X be the
trial of the first success (heads). Then X follows a Geometric
distribution parameter 0.5.

Definition
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Joint Probability Mass

Function
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PX}Y(X,)/) = P(X = X, YIy) = P(X zx&Y:y)

Z Px y(x,y) =1 (still a probability mass function)

all(x,y)

Marginal Probability: Px(x) = Z Px.y(x,y) (sum over all possible y)

y
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Joint Probability mass function

Definition

Let X and Y be random variables. If there are at most countable
possible outcomes (x,y) for the pair (X,Y), we say that X and
Y have a discrete joint distribution. The joint probability function
(joint pf) is

P X=xand Y=y)=PX=x,Y=y)lV(x,y) €R

As for the univariate case we have
> P(x,y) >0
> Z(XJ,) Pxy(x,y) =1

» Two variables: Bivariate Distribution
» More than two variables: Multivariate Distribution
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Marginal Probability Mass Functions

Theorem
Let (X,Y) be a discrete random vector with joint probability mass
function Px y(x,y), then the marginal pmfs of X and Y are given
by

Px(x) =Y Px,y(x,y)

YER

Py(y) =D Pxy(x)

xXER
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Conditional Probability Mass Functions
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Conditional Probability: Py (x|y) = Px.y(x.y)
Py(y)

X

e.g., Pxy(xly =2)=1{2/9,4/9,1/9,2/9}

Z Px|y(x|y) = 1 (still a probability mass function)
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Independence of Random Variables

Independence for random variables is defined in the same way as for
events

Definition (Independent Random Variables)

Two random variables are independent if for every two sets A and B
in R the events {s : X(s) € A} and {s: Y(s) € B} are independent

Theorem
Two random variables X and Y with joint pmf Px y(x,y) and
marginal pmfs Px(x) and Py (y) are independent if and only if

Px.y(x,y) = Px(x)Py(y) for all(x,y) € R?
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Conditional Independence
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» Assume you know that X <2and Y >4

> Are X and Y independent in this new universe?

Here we conditioned on an event, but in general X and Y are
independent given Z if

Px viz(x,y|z) = Pxz(x|2)Py|z(y|z) V(x,y,z) € R®
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Exercise

A fair coin is tossed three times. Let
» X = number of heads on the first toss
» Y = total number of heads
» Find the joint distribution of X, Y.
» Find the marginal distributions of X and Y.
» Find the conditional distribution of Y|X
» Are X and Y independent?
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Definition (Expectation)
The expected value or mean of X is defined to be

E(X) = xPx(x)

assuming that the sum is well-defined.

We can think of the expectation as the average of a very large number
of independent draws from the distribution (11D draws).
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Examples

» Let X ~ Bernoulli(p).E(X) =?
» Flip a fair coin twice. Let X be the number of heads. E(X) =7
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Practice Exercises

Section Exercises

3.1 9,10
3.4 2
35 2,5
3.6 2
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