Parametric Statistics

Sofia Triantafillou
sof.triantafillou@gmail.com

University of Crete
Department of Mathematics and Applied Mathematics
October 4, 2022

Lecture Summary

2.1 The Definition of Conditional Probability
2.2 Independent Events
2.3 Bayes' Theorem

- SKIP: 2.4 The Gambler's Ruin Problem
3.1 Random Variables and Discrete Distributions.

Reminder

- Conditional Probability:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \text { for } P(B)>0
$$

- Independence:

$$
\begin{gathered}
P(A \cap B)=P(A) P(B) \\
P(A \mid B)=P(A)
\end{gathered}
$$

- Bayes Rule

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Law of Total Probability

Partition

Let Ω be a sample space. If $A_{1}, A_{2}, A_{3}, \ldots$ are disjoint and $\bigcup_{i} A_{i}=$ Ω then the collection $A_{1}, A_{2}, A_{3}, \ldots$ is called a partition of Ω.

Law of total probability
If events $B_{1}, \ldots B_{k}$ form a partition of hte sample space Ω and $P\left(B_{j}>0\right.$ for all j, then for every event A in Ω

$$
P(A)=\sum_{i=1}^{k} P\left(A \cap B_{j}\right)=\sum_{i=1}^{k} P\left(A \mid B_{j}\right) P\left(B_{j}\right)
$$

Bayes Theorem revisited

- Vacc: Yes if vaccinated, zero otherwise
- Hosp: Yes if hospitalized, zero otherwise.
- $P($ Hosp \mid Vacc $)=0.01$
- $P($ Hosp $\mid \neg$ Vacc $)=0.2$
- Three different possibilities: $P($ Vacc $)=0.8,0.5,0.99$

Let' s use Bayes rule to compute $P(\operatorname{Vacc} \mid$ Hosp $)$ for all three cases.

Independence

Definition

Independence of multiple events A set of events $\left\{A_{i}: i \in I\right\}$ are independent if

$$
\mathbb{P}\left(\cap_{i \in J} A_{i}\right)=\prod \mathbb{P}\left(A_{i}\right)
$$

for every finite subset J of I.

- If $P\left(A_{i} \cup A_{j}\right)=P\left(A_{i}\right) P\left(A_{j}\right)$ for every pair $(i, j), i \neq j$ then the events are called pairwisely independent.
- Pairwise Independence does not imply joint independence.
- Example: Tossing a fair coin twice.
- Event A: Heads on the first toss.
- Event B: Heads on the second toss.
- Event C: The two tosses are the same.

Conditional Independence

- A and B are independent given C :

$$
\begin{gathered}
P(A \cap B \mid C)=P(A \mid C) P(B \mid C) \\
P(A \mid B, C)=P(A \mid C)
\end{gathered}
$$

- Conditional Independence does not imply independence.
- Independence does not imply conditional independence.

Random Variables

Random Variable
A random variable is a mapping $X: \Omega \rightarrow \mathbb{R}$ that assigns a real number $X(\omega)$ to each outcome ω.

Example
Consider the experiment of flipping a coin 10 times, and let $X(\omega)$ denote the number of heads in the outcome ω. For example, if $\omega=$ HHHTHHTTHT, $X(\omega)=6$.

Random Variables

- Why do we need random variables? (easier to work with than original sample space)
- A random variable is NOT a variable (in the algebraic sense).
- A random variable takes a specific value AFTER the experiment is conducted.

Notation

- Letter near the end of the alphabet since it is a variable in the context of the experiment.
- Capital letter to distinguish from algebraic variable.
- Lower case denotes a specific value of the random variable.

Random Variables

- An assignment of a value (number) to every possible outcome.
- Strictly speaking: A function from the sample space Ω to the real numbers.
- It can take discrete or continuous values.
- We will start with discrete values to build our intuition, and then proceed to continuous.

Probability mass function

Definition (Probability (mass) function)
If a random variable X has a discrete distribution, the probability function of X is defined as the function p_{X} such that

$$
P_{X}(x)=\mathbb{P}(X=x)=P(\omega \in \Omega \quad \text { s.t. } \quad X(\omega)=x)
$$

The closure of the set $x: P_{X}(x)>0$ is called the support of the (distribution of) X.

Computing Probability mass functions

Bernoulli distribution

Some distributions come up so often, that they have a name.

Definition

A random variable X that only takes two values 0 (failure) and 1 (success) with $P(X=1)=p$ has the Bernoulli distribution with parameter p.
Example: You flip a coin one time. X is the result of the coin flip. You can define "Heads" as success and "Tails" as failure (or the other way around, it does not matter) Then X follows a Bernoulli distribution with parameter p.

$$
P_{X}(x)=p^{x}(1-p)^{1-x}
$$

Binomial Distribution

Now imagine you toss the fair coin 5 times. Some possible outcomes are 00000, 1000, 01100 etc. Let X be the number of successes (heads) after the 5 times. Then X follows a Binomial distribution with parameters $(5,0.5)$.

Definition

The binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each with a binary outcome: success (with probability p) or failure (with probability $q=1-p$). The pmf of the binomial distribution is

$$
P_{X}(x)=\binom{n}{x} p^{x}(1-p)^{1-x} \text { for } x=0, \ldots, n
$$

Geometric distribution

Now imagine you toss the fair coin until you get heads. times. Some possible outcomes are $1,01,0001,0 \ldots 1$, etc. Let X be the trial of the first success (heads). Then X follows a Geometric distribution parameter 0.5.

Definition

