Lecture Summary

- ► Sample mean and variance
- Markov and Chebysev Inequalities
- Convergence of Random Variables
- Weak law of large numbers

Material can be found in Chapter 6 of Degroot and Schervish.

Sample Mean

Definition (Sample mean)

Let $X_1, \ldots X_n$ be random variables. Their average

$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$$

is called their sample mean.

▶ What happens when $n \to \infty$?

Properties of the sample mean

Theorem (Mean and variance of the sample mean)

Let $X_1, ... X_n$ be a random sample from a distribution with mean μ and variance σ^2 . Then $E(\overline{X}_n) = \mu$, and $Var(\overline{X}_n) = \sigma^2/n$.

Inequalities

Theorem (Markov Inequality)

Let X be a random variable such that $P(X \ge 0) = 1$. Then for every real number t,

$$P(X \ge t) \le \frac{E(X)}{t}$$
.

Theorem (Chebysev Inequality)

Let X be a random variable for which Var(X) exists. Then for every number t,

$$P(|X-E(X)| \geq t) \leq \frac{Var(X)}{t^2}$$
.

Convergence in probability

Arithmetic convergence	Convergence in probability
Series S_n of numbers con-	Series X_n of random vari-
verges to number ℓ	ables converges to number
	α
$lim_{n\to\infty}S_n=\ell \text{ or } S_n\to\ell$	$X_n \xrightarrow{p} \alpha$
S_n gets arbitrarily close to ℓ	The probability distribution
	of X gets more and more
	concentrated around $lpha$
$\forall \epsilon > 0 \ \exists n_0 : \forall n > n_0 S_n - $	$\forall \epsilon > 0, \lim_{n \to \infty} P(X_n - \alpha < \epsilon) = 1$
$\ell <\epsilon$	$ \alpha < \epsilon) = 1$

Properties of Convergence in probability

Weak Law of Large Numbers

Theorem (Weak Law of Large Numbers)

Suppose that X_1, \ldots, X_n form a random sample from a distribution (i.e., X_i, \ldots, X_n are i.i.d.) for which the mean is μ and the variance is finite. Let $\overline{X_n}$ denote the sample mean. Then

$$\overline{X_n} \xrightarrow{p} \mu$$
.