Lecture Summary

- Joint/Conditional/Marginal PMFs.
- ► Joint/Conditional/Marginal PDFs.
- Covariance.
- Conditional Expectations.
- Properties of expecations

Material can be found in Chapters 3 (3.4-3.9) and 4 (4.1-4.3,

4.6-4.7) of DeGroot and Schervish.

Many slides from MIT open courseware

Joint PMFs

y ')				
3	1/20	2/20	2/20		
2	2/20	3/20	1/20	2/20	
1		2/20	3/20		
0	1/20				
	0	1	2	3	-

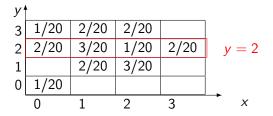
$$P_{X,Y}(x,y) = P(X = x, Y = y) = P(X = x \& Y = y)$$

X

$$\sum_{x} \sum y P_{X,Y}(x,y) = 1 \text{ (still a probability mass function)}$$

Marginal Probability: $P_X(x) = \sum_{v} P_{X,Y}(x,y)$ (sum over all possible y)

Conditional PMFs



Conditional Probability:
$$P_{X|Y}(x|y) = \frac{P_{X,Y}(x,y)}{P_Y(y)}$$

e.g., $P_{X|Y}(x|y=2) = \{2/9,4/9,1/9,2/9\}$
 $\sum_{y} P_{X|Y}(x|y) = 1$ (still a probability mass function)

Joint/Conditional/Marginal PDFs

$$P(X, Y \in S) = \int \int_{S} f_{X,Y} dx dy$$

$$f_{X,Y}(x,y) \approx P(x \le X \le x + \delta, y \le Y \le y + \delta) \delta^{2}$$

$$\int_{X} \int y f_{X,Y}(x,y) = 1 \text{ (still a probability density function)}$$

Marginal Probability: $f_X(x) = \int_Y f_{X,Y}(x,y)$ (integrate over all possible y)

Joint/Conditional/Marginal PDFs

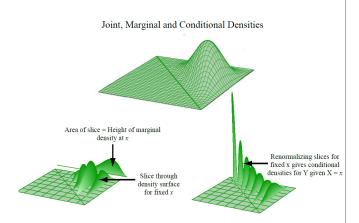


Image by MIT OpenCourseWare, adapted from *Probability*, by J. Pittman, 1999.

Expectations

LOTUS for functions of multiple r.v.s:

$$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) P_{X,Y}(x,y), \text{ discrete}$$

$$E[g(X,Y)] = \int_{X} \int_{Y} g(x,y) f_{X,Y}(x,y) dxdy, \text{ continuous}$$

Conditional Expectation

$$E(X|y) = \sum_{x} x P_{X|y}$$
 (for a given value y of Y)

$$E(X|Y) = \sum_{x} x P_{X|Y} (\text{for every value } y \text{ of } Y)$$

Independent random variables

Independent Discrete Random Variables

$$P_{X,Y}(x,y) = P_X(x)P_Y(y)$$
 for every pair (x, y)

Independent Continuous Random Variables

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$
 for every pair (x, y)

We can extend this to multiple random variables.

Linearity of Variances for Independent Random Variables

Linearity of variances only holds for independent random variables.

Theorem

Let X_1, \ldots, X_n be a set of independent random variables. Then

$$Var[X_1 + \cdots + X_n] = Var[X_1] + \cdots + Var[X_n]$$

Prove it for the case of two discrete variables.

Covariance

Covariance measures how much two r.vs. vary together (i.e., are larger than usual at the same time).

Definition (Covariance)

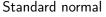
The **covariance** of two variables X and Y is defined to be

$$Cov(X, Y) = E[(X - E(X))(Y - E(Y))]$$

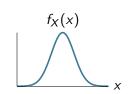
If X, Y are independent, then Cov(X, Y) = 0 Correlation: Covariance without dimensions

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

The normal distribution



$$\mathcal{N}(0,1): f_X(x) = rac{1}{\sigma\sqrt{2\pi}} \exp\left(-rac{x^2}{2}
ight)$$



Normal with mean μ and variance σ^2

$$\mathcal{N}(0,1): f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$$

.