Lecture 13

Hypothesis tests for categorical data

Fisher's exact test

- Ronald Fisher offered lady Muriel Bristol, a cup of tea.
- She declined after watching Fisher prepare it, saying that she preferred the taste when the milk was poured in the cup first.
- Fisher and others scoffed at this and a colleague, William Roach, suggested a test.
- 4 cups with milk poured first, 4 cups with milk poured after.
- Otherwise the cups were the same (temperature, appearance etc).

Fisher's exact test

- The lady is offered the tea, and for every cup she guesses:
- Milk first (MF) or Tea first (TF)

Contingency table

Fisher's exact test

- The lady is offered the tea, and for every cup she guesses:
- Milk first (MF) or Tea first (TF)

Once you fix one of the values, all the rest are fixed because the marginals are fixed

ls are		MF	TF	Total
Prep	MF	4	0	4
	TF	0	4	4
	Total	4	4	8

Contingency table

Fisher's exact test

- The lady is offered the tea, and for every cup she guesses:
- Milk first (MF) or Tea first (TF)
- H_{0} : The lady has no ability of distinguishing the method of preparation (the woman selects randomly).
- x : The number of MF she got right.
- P-value: The probability of observing data at least as extreme (unfavorable to H_{0}) under the null hypothesis.

Contingency table

Fisher's exact test

- The lady is offered the tea, and for every cup she guesses:
- Milk first (MF) or Tea first (TF)
- H_{0} : The lady has no ability of distinguishing the method of preparation (the woman selects randomly).
- x : The number of MF she got right.
- P-value: The probability of observing data at least as extreme (unfavorable to H_{0}) under the null hypothesis.

Contingency table

- $P\left(X \geq x \mid H_{0}\right)$

$$
P\left(X=4 \mid H_{0}\right)
$$

Fisher's exact test

- H_{0} : The lady has no ability of distinguishing the method of preparation (the woman selects randomly).
- x : The number of MF she got right.
- P-value: The probability of observing data at least as extreme (unfavorable to H_{0}) under the null hypothesis.
- Under the null hypothesis, the lady picks 4 cups at random, without replacement, from a population of 4 MF and TF cups
- X: number of MF cups
- $X \sim$ Hypergeometric (N, K, n)
- N is the population size
- K is the number of success states in the population

Contingency table

- n is the number of draws
- $\mathrm{P}(\mathrm{X}=\mathrm{x})=\frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}$

$$
P\left(X=4 \mid H_{0}\right)
$$

Fisher's exact test

- Under the null hypothesis, the lady picks 4 cups at random, without replacement, from a population of 4 MF and TF cup
- X: number of MF cups
- $X \sim$ Hypergeometric (N, K, n)
- N is the population size
- K is the number of success states in the population
- n is the number of draws
- $\mathrm{P}(\mathrm{X}=\mathrm{x})=\frac{\left(\begin{array}{c}K \\ x \\ x\end{array}\right)\binom{N-K}{n-x}}{\binom{N}{n}}$

For $X \sim \operatorname{Hypergeometric}(8,4,4)$

- $P(X=0)=1 / 70$
- $P(X=1)=16 / 70$

Contingency table

- $P(X=2)=36 / 70$
- $P(X=3)=16 / 70$
- $P(X=4)=1 / 70$

$$
P\left(X=4 \mid H_{0}\right)=\frac{1}{70}=0.014
$$

Fisher's exact test

- Under the null hypothesis, the lady picks 4 cups at random, without replacement, from a population of 4 MF and TF cup
- X: number of MF cups
- $X \sim$ Hypergeometric (N, K, n)
- N is the population size
- K is the number of success states in the population
- n is the number of draws
- $\mathrm{P}(\mathrm{X}=\mathrm{x})=\frac{\left(\begin{array}{c}K \\ x \\ x\end{array}\right)\binom{N-K}{n-x}}{\binom{N}{n}}$

For $X \sim \operatorname{Hypergeometric}(8,4,4)$

- $P(X=0)=1 / 70$
- $P(X=1)=16 / 70$

Contingency table

- $P(X=2)=36 / 70$
- $P(X=3)=16 / 70$
- $P(X=4)=1 / 70$

$$
P\left(X=3 \mid H_{0}\right)+P\left(X=4 \mid H_{0}\right)=\frac{16}{70}+\frac{1}{70}=0.242
$$

The χ^{2} test

- Assume that you have a large population of items of k different types, and let p_{i} denote the probability of an item selected at random will be of type $i=1, \ldots, k$
- Let $p_{1}^{o}, \ldots, p_{k}^{o}$ be numbers such that $p_{i}^{o}>0 \sum p_{i}^{o}=1$
- We want to test the hypothesis:
- $H_{0}: p_{i}=p_{i}^{o} \forall i$ vs
- $H_{1}: p_{i} \neq p_{i}^{o}$ for at least one i
- Assume we have a data set of n observations, and N_{i} is the number of observations of type i.
- The expected number of observations of type i under the null hypothesis is $n p_{i}^{0}$
- Define the statistic $Q=\sum_{i=1}^{k} \frac{\left(N_{i}-n p_{i}^{o}\right)^{2}}{n p_{i}^{0}}$
- Under the null, when $n \rightarrow \infty Q \sim \chi^{2}$ with k - 1 degrees of freedom.

Example: Independence

- You have a population of 520 people
- 160/520 smoke.
- 210/520 have CVD.

Smoking	CVD			
		Y	N	Total
	Y	120	40	160
	N	90	270	360
	Total	210	310	520

Contingency table

Example: Independence

Null Hypothesis $\left(\mathrm{H}_{0}\right)$: Smoking is independent of CVD Alternative Hypothesis $\left(\mathrm{H}_{1}\right)$: Smoking is dependent of CVD

Mathematically:

$$
\begin{aligned}
& \mathbf{H}_{0}=\forall i, j \quad p_{i j}=p_{i+} \times p_{+j} \\
& \mathbf{H}_{1}=\exists i, j: \quad p_{i j} \neq p_{i+} \times p_{+j}
\end{aligned}
$$

	$C V D=0$	$C V D=1$	p_{0+}
$S=0$	p_{00}	p_{01}	
$S=1$	p_{10}	p_{11}	p_{1+}
	p_{+0}	p_{+1}	1

$$
\begin{aligned}
& p_{i j}=P(X=i, Y=j) \\
& p_{i+}=P(X=i) \\
& p_{+j}=P(Y=j)
\end{aligned}
$$

Reminder: Independence:

$$
\forall x, y P(\mathrm{Y}=\mathrm{y}, \mathrm{X}=\mathrm{x})=P(Y=\mathrm{y}) \mathrm{P}(\mathrm{X}=\mathrm{x})
$$

Statistical Dependence

Statistical Dependence

Test statistic: Expected counts

in your data

If Smoking and CVD
were independent?

Are Smoking and CVD independent?

Are Smoking and CVD independent?

$$
P(\text { Smoking }=\text { Yes, } C V D=Y e s)=P(\text { Smoking }=Y e s) * P(C V D=Y e s)=0.4038 * 0.3077
$$

Are Smoking and CVD independent?

in your sample

If Smoking and CVD
were independent?

Are Smoking and CVD independent?

counts in your data

Expect/ counts If Smoking and CVD
were independent

$$
P(\text { Smoking }=\text { Yes, } C V D=\text { Yes }) * \# \text { samples }=.1242 * 52
$$

- $n_{i j}$: Counts in your data (\# observations in cell i, j)
- $e_{i j}$: Expected counts under H_{0}
- Summarize the difference of $n_{i j}$ from $e_{i j}$ for all i, j.
X^{2} statistic:

$$
t=\sum_{i, j} \frac{\left(n_{i j}-e_{i j}\right)^{2}}{e_{i j}}
$$

What is the probability of observing a value t at least as extreme as the one you observed in your data?

$$
\text { p-value: } P\left(|T|>\left|t_{o b s}\right| \mid \mathrm{H}_{0}\right)
$$

Theoretical distribution of t under the null

 hypothesis$$
P\left(T=t \mid H_{0}\right) \sim \frac{t^{\frac{d f-2}{2}} e^{-\frac{t}{2}}}{2^{\frac{d f}{2}} \Gamma\left(\frac{d f}{2}\right)},
$$

where $d f$ are the degrees of freedom, i.e. the number of parameters that are free to vary
For testing $\mathrm{X} \Perp \mathrm{Y}$

$$
d f=(\# \text { possible values of } X-1) \times
$$

$$
\text { (\# of possible values of } Y-1 \text {) }
$$

in our example $d f=(2-1) \times(2-1)=1$

- Check in the pdf
- If the p-value is less than a significance threshold α, reject the null hypothesis.

p-value: $P\left(|T|>\left|t_{o b s}\right| \mid \mathrm{H}_{0}\right)$

Permutation testing

- What if you do not know the distribution.
- Use permutation to estimate the distribution of t under H_{0}

Sample (Person)	Smoking	CVD
1	Yes	Yes
2	No	No
3	Yes	Yes
4	No	No
5	Yes	No
6	No	Yes

Under the null, the columns in your data are independent

Sample (Person)	Smoking	CVD
1	Yes	No
2	No	Yes
3	Yes	No
4	No	Yes
5	Yes	No
6	No	Yes

Sample (Person)	Smoking	CVD
1	Yes	No
2	No	No
3	Yes	No
4	No	Yes
5	Yes	Yes
5	No	Yes

Matrices with permuted rows for one of your variables are equally probable (given H_{0}).

Re-sampling techniques

Sample (Person)	Smoking	CVD	
1	Yes	Yes	
2	No	No	
3	Yes	Yes	
4	No	No	
5	Yes	No	
52	No	Yes	

t_{3}

t_{1000}

Randomly permute the samples for one of your variables and calculate t .
Do that 1000 times.
Estimate the pdf*.
You have an estimate of the distribution of t under H_{0}.

