Lecture 13

Hypothesis tests for categorical data

- Ronald Fisher offered lady Muriel Bristol, a cup of tea.
- She declined after watching Fisher prepare it, saying that she preferred the taste when the milk was poured in the cup first.
- Fisher and others scoffed at this and a colleague, William Roach, suggested a test.
- 4 cups with milk poured first, 4 cups with milk poured after.
- Otherwise the cups were the same (temperature, appearance etc).

- The lady is offered the tea, and for every cup she guesses:
 - Milk first (MF) or Tea first (TF)

- The lady is offered the tea, and for every cup she guesses:
 - Milk first (MF) or Tea first (TF)

• The lady is offered the tea, and for every cup she guesses:

- Milk first (MF) or Tea first (TF)
- *H*₀: The lady has no ability of distinguishing the method of preparation (the woman selects randomly).
- *x*: The number of MF she got right.
- P-value: The probability of observing data at least as extreme (unfavorable to H_0) under the null hypothesis.

Contingency table

- The lady is offered the tea, and for every cup she guesses:
 - Milk first (MF) or Tea first (TF)
- *H*₀: The lady has no ability of distinguishing the method of preparation (the woman selects randomly).
- *x*: The number of MF she got right.
- P-value: The probability of observing data at least as extreme (unfavorable to H_0) under the null hypothesis.
- $P(X \ge x|H_0)$

$$P(X = 4|H_0)$$

- H_0 : The lady has no ability of distinguishing the method of preparation (the woman selects randomly).
- *x*: The number of MF she got right.
- P-value: The probability of observing data at least as extreme (unfavorable to H_0) under the null hypothesis.
- Under the null hypothesis, the lady picks 4 cups at random, without replacement, from a population of 4 MF and TF cups
- X: number of MF cups
- $X \sim Hypergeometric(N, K, n)$
 - N is the population size
 - K is the number of success states in the population
 - n is the number of draws

•
$$P(X=x) = \frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}$$

$$P(X = 4|H_0)$$

- Under the null hypothesis, the lady picks 4 cups at random, without replacement, from a population of 4 MF and TF cups
- X: number of MF cups
- $X \sim Hypergeometric(N, K, n)$
 - N is the population size
 - K is the number of success states in the population
 - n is the number of draws

•
$$P(X=x) = \frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}$$

For $X \sim Hypergeometric(8, 4, 4)$

- P(X=0)=1/70
- P(X=1) = 16/70
- P(X=2) = 36/70
- P(X=3) = 16/70
- P(X=4) =1/70

$$P(X = 4|H_0) = \frac{1}{70} = 0.014$$

- Under the null hypothesis, the lady picks 4 cups at random, without replacement, from a population of 4 MF and TF cups
- X: number of MF cups
- $X \sim Hypergeometric(N, K, n)$
 - N is the population size
 - K is the number of success states in the population
 - n is the number of draws

•
$$P(X=x) = \frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}$$

For $X \sim Hypergeometric(8, 4, 4)$

- P(X=0)=1/70
- P(X=1) = 16/70
- P(X=2) = 36/70
- P(X=3) = 16/70
- P(X=4) =1/70

$$P(X = 3|H_0) + P(X = 4|H_0) = \frac{16}{70} + \frac{1}{70} = 0.242$$

The χ^2 test

- Assume that you have a large population of items of k different types, and let p_i denote the probability of an item selected at random will be of type i = 1, ..., k
- Let p_1^o , ..., p_k^o be numbers such that $p_i^o > 0$ $\sum p_i^o = 1$
- We want to test the hypothesis:
 - $H_0: p_i = p_i^o \forall i vs$
 - $H_1: p_i \neq p_i^o$ for at least one i
- Assume we have a data set of n observations, and N_i is the number of observations of type i.
- The expected number of observations of type *i* under the null hypothesis is np_i^0
- Define the statistic $Q = \sum_{i=1}^{k} \frac{(N_i np_i^0)^2}{np_i^0}$
- Under the null, when $n \to \infty Q \sim \chi^2$ with k-1 degrees of freedom.

Example: Independence

- You have a population of 520 people
 - 160/520 smoke.
 - 210/520 have CVD.

Example: Independence

Null Hypothesis (\mathbf{H}_0) : Smoking is independent of CVD Alternative Hypothesis (\mathbf{H}_1) : Smoking is dependent of CVD

Mathematically:

 $\mathbf{H}_{0} = \forall i, j \ p_{ij} = p_{i+} \times p_{+j}$ $\mathbf{H}_{1} = \exists i, j: \ p_{ij} \neq p_{i+} \times p_{+j}$

Reminder: Independence:

 $\forall x, y P(Y = y, X = x) = P(Y = y)P(X = x)$

	<i>CVD</i> =0	CVD=1	
<i>S</i> =0	p_{00}	p_{01}	p_{0+}
<i>S</i> =1	p_{10}	p_{11}	p_{1+}
	$p_{\pm 0}$	p_{+1}	1

$$p_{ij} = P(X = i, Y = j)$$

$$p_{i+} = P(X = i)$$

$$p_{+j} = P(Y = j)$$

Statistical Dependence

Contingency table

Joint Probability Distribution P(CVD, Smoking)

Conditional Probability Distribution P(CVD|Smoking)

Conditional Probability Distribution P(Smoking|CVD)

Statistical Dependence

Y

.2308

.1731

.4038

Y

Ν

Total

Smoking

Contingency table

CVD

Ν

.0769

.5192

.5962

Conditional Probability Distribution P(CVD|Smoking)

Conditional Probability Distribution P(Smoking|CVD)

Joint Probability Distribution P(CVD, Smoking)

P(Smoking)≠P(Smoking|CVD=yes)

P(Smoking)

Total

.3077

.6923

1

Test statistic: Expected counts

in your data

If Smoking and CVD were independent?

Are Smoking and CVD independent?

Are Smoking and CVD independent?

P(Smoking = Yes, CVD = Yes) = P(Smoking = Yes) * P(CVD = Yes) = 0.4038 * 0.3077

Are Smoking and CVD independent?

in your sample

If Smoking and CVD were independent?

- *n_{ij}*: Counts in your data (# observations in cell i,j)
- e_{ij} : Expected counts under H₀
- Summarize the difference of n_{ij} from e_{ij} for all i, j.

 X^2 statistic:

$$t = \sum_{i,j} \frac{(n_{ij} - e_{ij})^2}{e_{ij}}$$

What is the probability of observing a value *t* at least as extreme as the one you observed in your data?

p-value: $P(|T| > |t_{obs}| | H_0)$

Theoretical distribution of t under the null hypothesis df 2

$$P(T = t | H_0) \sim \frac{t^{\frac{df-2}{2}}e^{-\frac{t}{2}}}{2^{\frac{df}{2}}\Gamma\left(\frac{df}{2}\right)},$$

where df are the degrees of freedom, i.e. the number of parameters that are free to vary

For testing X **I** Y

$$df = (\# \text{ possible values of } X - 1) \times$$

(# of possible values of $Y - 1$)
in our example $df = (2 - 1) \times (2 - 1) =$

- Check in the pdf
- If the p-value is less than a significance threshold α, reject the null hypothesis.

p-value: $P(|T| > |t_{obs}| | H_0)$

Permutation testing

- What if you do not know the distribution.
- Use permutation to estimate the distribution of t under H_0

Sample (Person)	Smoking	CVD
1	Yes	Yes
2	No	No
3	Yes	Yes
4	No	No
5	Yes	No
6	No	Yes
		1

ſ	Sample (Person)	Smoking	CVD	
	1	Yes	No	
	2	No	Yes	
	3	Yes	No	
	4	No	Yes	
	5	Yes	No	
	6	No	Yes	◀

~		<u> </u>		
	Sample (Person)	Smoking	CVD	
	1	Yes	No	
	2	No	No	▲
	3	Yes	No	•
	4	No	Yes	
	5	Yes	Yes	
	5	No	Yes	

Matrices with permuted rows for one of your variables are equally probable (given H_0).

Under the null, the columns in your data are independent

Re-sampling techniques

Sample (Person)	Smoking	CVD
1	Yes	Yes
2	No	No
3	Yes	Yes
4	No	No
5	Yes	No
52	No	Yes

 t_1

Sample (Person)	Smoking	CVD
1	Yes	No
2	No	Yes
3	Yes	No
4	No	Yes
5	Yes	No
52	No	Yes

 t_2

Sample (Person)	Smoking	CVD
1	Yes	Yes
2	No	No
3	Yes	No
4	No	No
5	Yes	Yes
52	No	Yes

 t_{1000}

Randomly permute the samples for one of your variables and calculate t.

Do that 1000 times.

Estimate the pdf*.

You have an estimate of the distribution of t under H_0 .

