Hypothesis Testing

» Testing Hypotheses (Chapter 9.1)
» The z-test (Chapter 9.1)
» T-tests (Chapter 9.5, 9.6)
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Testing Hypotheses

>

| 2

>

Let Xy,..., X, ~ f(x;0). Suppose we want to know if
0 = 6y or not, where 6 is a specific value of 6.

If we are flipping a coin, we may want to know if the coin is
fair; this corresponds to 6 = 1/2.

If we are testing the effect of two drugs — whose means
effects are 61 and 6> we may be interested to know if there is
no difference, which corresponds to 61 — 65 = 0.

We formalize this by stating a null hypothesis Hy and an
alternative hypothesis H;. For example:

H0:0:90 versusH1 297&00
More generally, consider a parameter space ©. We consider

Hy:0 € ©g versus Hy : 0 & Og
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Testing Hypotheses

» Let X be a random variable and let X be
Hy: 0 € ©g versus 0 € O, OgNOL =10

» Simple and Composite hypotheses:

» If ©; contains only a single value, it is a simple hypothesis.
» If ©; contains more than a single value, it is a composite
hypothesis.

» One-sided vs two-sided hypotheses:
> Hy:0>0y Hyi:0<80.
>H0:8§00, H120>00.
» If the null is simple, the alternative is usually two-sided:

Hoieieo, H1:07£00.
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Testing hypotheses

>

vvyyypy

You want to find a critical region, i.e., a subset of all possible
data that lead to rejection of Hy.

Define a statistic of your data T'(x).

Define a rejection region (subset of the real line) for the
statistic, e.g.

R =[c,)

c is the critical value.
If T(x) € R reject Hy.
Otherwise do not reject Hy.

Hypothesis testing is like a legal trial: Innocent unless the
evidence strongly suggest they are guilty.
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Example: Mean of normal distribution.

> X1,..., X0 ~N(u,02), ois known.
> \We want to test:

Ho:p < povs Hy: > po

» Obvious relevant statistic: X,

» Define a rejection region for the sample mean:
R:{x:X,>po+ec,c>0}

> If X,, > po + c reject Hy.
» Otherwise do not reject Hp.
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The p-value

> We want to make a decision on whether we think Hy or H is
correct.

» We want to quantify our belief.

» p-value: The probability of observing data at least as favorable
to the alternative hypothesis as our current data set, if the
null hypotbhesis is true.

» If the p-value is low (lower than the significance level, o, which
is usually 5%) we say that it would be very unlikely to observe
the data if the null hypothesis were true, and hence reject Hy.

» If the p-value is high (higher than the significance level, «)
then it is pretty likely to observe the data even if the null
hypothesis were true, so we do not reject Hy.

We never accept Hy since we're not in the business of trying to
prove it!
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Example: Mean of the normal distribution:

> )(1,... ,)(n ~ J\f([t,12).
n =25

» For simplicity, assume that we want to test:

v

Hy:u=0vsu#0

» Assume we observe T,, = 0.5.

» The p-value is the probability of observing data at least as
favorable to the alternative hypothesis as our current data set,
if the null hypothesis is true.

P(|X,| > 0.5|null is true) = P(|X,,| > 0.5|u=0) = ...
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Example: Mean of the normal distribution:

» If the true value of the mean is 0, then there is a 1.2% chance
of observing a sample mean of 25 observations at least 0.5.

» This is a very low probability, so we can conclude that it could
not have happened by chance.

» The difference between the null value of 0 and observed
sample mean of 0.5 is very unlikely to be due to chance or
sampling variability.

» Now assume that we have 10 observations.
» Find the p-value.
The p-value is NOT the probability that the null is true!
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Recap:Mean of a population

» Set the hypotheses

» Hy : g = null value or p >< null value
» Hy : p 5 null value or o <> null value

» Assumptions

» Independence of X;,..., X,
» Normality (of X,,):

> normal population
» n > 30 —CLT (also true for sample variance).

» Calculate a test statistic and a p-value: Z = @\/ﬁ
» Make a decision:

» If p-value < «, reject Hy.

» If p-value >, do not reject Hy.
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Question

> Last year, the average grade of students the first midterm of
applied statistics was 68.7.

» This year, the first 50 students that were graded have an
average grade of 63.7 with a standard deviation of 27.

P |s the average grade of the first midterm different this year
than last year?

» Can we reject the null hypothesis?
|P(X7 — p) > [63.7 — pl| Ho) =
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One-tailed vs two-tailed tests.

» Consider the following hypotheses

» Test 1: This year's grades are greater than last year's grades.
> Test 2: This year's grades are different than last year's grades.
» What is the difference between the two?
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One sample t-test

v

Assume that | only graded 10 midterm exams, so | cannot use
the "large" sample approximation s — o.

| assume that grades follow a normal distribution A/ (y, 0%)
with unknown mean and standard deviation.
What can | do?
Xn—
Use the fact: /n=2-t ~t, ;.

This is the one-sample t-test, used for testing hypothesis
about the mean of a normal distribution when the sample size
is small.

P([X, — ) > 63.7 — ul [ Ho) =
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Paired t-test

» Now assume that | have the grades for the midterm X and the
final Y for applied statistics.

» | want to see if students did better or worse at the finals.

v

My samples are "paired": The same student ¢ has both a X
and a Y.

| create the variable X — Y and test if the mean is 0.

vy

This is called paired t-test.
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Comparing the means of two distributions

» Assume that | want to compare the midterm grades of male
and female students.

» | have graded 20 midterms from female students, and 30
midterms from male students.

» Let X denote the grades of female students, Y denote the
grades of male students.

» We assume X and Y have the same unknown variance.
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T-test

Theorem
Let X1,...,X,, be m samples from a normal distribution with mean
e and variance o2, and Yi,...,Y, be n samples from a normal

distribution with mean 1, and variance o%. Let

m n

2= (Xi-Xpn)? Sp=) (Yi-Y.)>

i=1 i=1
Define the test statistic:

(m+n— 2)1/2(Ym )
&+ DAL+ S

Then if py = p,, The distribution of U is the t-distribution with
m + n — 2 degrees of freedom.
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T-test
» One-sided hypothesis:

Ho : pip > poy vs Hy @ iy < piy
> p-value: Thypn—2o(u)

> Rejection region: U < T,,1,, ,(la).
» One-sided hypothesis:

Ho: prg < py vs Hi o pg > iy
» p-value: 1 —Tpqn—o(u)

> Rejection region: U > T¢ (1 — «).
» Two-sided hypothesis:

Ho @ pp = py vs Hi @ pig 7 py
» p-value: 2[1 — T pn—a(Jul)].

> Rejection region: |U| > T}, (1 —a/2).
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Unequal variances

> If the variances o2 and O'Z are unknown, but 02 = kzag where
k is a known positive constant, then under 11, = f1,,

(m+n—-2)12(X,, —Y,)
(% + £)102(52 + )12

m

U =

follows a t distribution with m + n — 2 degrees of freedom.
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Unequal variances

» |f the variances a:% and 05 are unknown, the problem becomes
very difficult.

» Welch's t-test:

Xm—Y,
V="3 S5 _\1/2
(m(mfl) + n(nfl))

2
> Let W:m(:?_l) + n(:il))l/Q, and use a Gamma distribution

to approximate the distribution of W.

» If W has the approximating Gamma distribution, then V' has
the t-distribution with v degrees of freedom:

52 s2
(m('rrf—l) + n(ny—l) )2

52 2
(mil)?’ (EI)Z + (n,ll)s (#)2
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Meaning of significance.

Suppose :
» X, =50,5s=2
> Hy:p <495, Hy:p>49.5.
Will the p-value be lower if n = 100 or n = 100007
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Meaning of significance.

Suppose :
» X, =50,5s=2
> Hy:p<49.9 Hy:p>49.9.
Will the p-value be lower if n = 100 or n = 100007
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Practical vs statistical significance

>

>

Real differences between the point estimate and null value are
easier to detect with larger samples.

However, very large samples will result in statistical
significance even for tiny differences between the sample mean
and the null value (effect size), even when the difference is not
practically significant.

This is especially important to research: if we conduct a study,
we want to focus on finding meaningful results (we want
observed differences to be real but also large enough to
matter).
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