Applied Statistics

Sofia Triantafillou

sof.triantafillou@gmail.com

University of Crete Department of Mathematics and Applied Mathematics

Lecture Summary

- Confidence Intervals
- Bootstrap Confidence Intervals (material on the website).

Confidence Intervals for the mean of Normal

• Let
$$X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$$
.
• I know that

$$U = rac{n^{1/2}(\overline{X}_n - \mu)}{\sigma'} \sim t_{n-1}, ext{ where }$$

$$\sigma' = \left(\frac{\sum_{n=1}^{n} (X_i - \overline{X}_n)^2}{n}\right)^{1/2}$$

▶ I can compute P(-c < U < c).

I can compute

$$P(\overline{X}_n - \frac{c\sigma'}{n^{1/2}} < \mu < \overline{X}_n + \frac{c\sigma'}{n^{1/2}})$$

 $(\overline{X}_n - T_{n-1}^{-1}(\frac{\gamma+1}{2})\frac{\sigma'}{n^{1/2}}, \overline{X}_n + T_{n-1}^{-1}(\frac{\gamma+1}{2})\frac{\sigma'}{n^{1/2}}) \text{ is the } \gamma 100\%$ confidence interval for μ .

Confidence Intervals for the mean of Normal

- Sometimes we use the notation 1 α confidence interval, so a/2 is the probability mass on each side of the interval.
- $(\overline{X}_n T_{n-1}^{-1}(1 a/2)\frac{\sigma'}{n^{1/2}}, \overline{X}_n + T_{n-1}^{-1}(1 a/2)\frac{\sigma'}{n^{1/2}})$ is the (1 a)100% confidence interval for μ .

Confidence Intervals: Interpretation

- ► After observing our sample, we find that (a, b) is our 95%-Cl for µ.
- ► This does not mean that P(a < µ < b) = 0.95. In fact, we can not make such statements if we consider µ to be a number (frequentist view).</p>
- We can think of our interpretation as repeated samples.
 - Take a random sample of size n from $\mathcal{N}(\mu, \sigma^2)$.
 - Compute (a, b).
 - Repeat many times.
 - There is a 95% chance for the random intervals to include the value of µ.

Computing Confidence Intervals

In python:

- Sample n = 10 data points from a $\mathcal{N}(3, 2^2)$ distribution.
- Compute the 90% confidence interval for the mean μ .
- Repeat 100 times.
- How many times does the interval include the true mean?
- Repeat with $\sigma^2 = 4^2$. What happens to the CIs?
- Repeat with n = 50. What happens to the Cls?

The Bootstrap

What if we do not know the distribution of X_i ?

• Data $x_1, x_2, \ldots x_n, \sim F$ with true mean μ .

► *F*^{*}: empirical distribution (resampling distribution).

▶ $x_1^*, x_2^*, \ldots, x_n^*$ resample same size data.

Example: Die rolling: $3, 1, 2, 4, 3, 2, 1, 6, 1, 6$						
F	1/6	1/6	1/6	1/6	1/6	1/6
F^*	0.3	0.2	0.2	0.1	0	0.2

Bootstrap Confidence Intervals

$$\delta^* = \overline{x}_n^* - \overline{x}_n.$$
$$\delta = \overline{x}_n - \mu.$$

The bootstrap principle: The distribution of δ is the approximately the same as the distribution of δ^* .

- You want to find an 1-a confidence interval for μ .
- \blacktriangleright Let q^*_β be the β sample quantile of the empirical distribution of δ^*

$$q_{a/2}^* \le \overline{x}_n - \mu \le q_{1-a/2}^*$$

$$\overline{x}_n - q_{1-a/2}^* \le \mu \le \overline{x}_n - q_{a/2}^*$$

Empirical Bootstrap Confidence Intervals

- Data $x_1, x_2, \ldots x_n$ draw from a distribution F.
- Use the data to estimate the variation of the estimates (based on the data).
 - Generate many bootstrap samples $x_1^*, x_2^*, \ldots, x_n^*$.
 - Compute the statistic θ^* for each sample.
 - Compute the bootstrap difference $\delta^* = \theta^* \hat{\theta}$.
 - Use the quantiles q^* of δ^* to approximate the quantiles of $\delta = \hat{\theta} \theta$.
 - Compute a confidence interval $(\hat{\theta} q^*_{1-a/2}, \hat{\theta} q^*_{a/2})$

Computing bootstrap Confidence Intervals

In python:

- Sample n = 10 data points from a $\mathcal{N}(3, 2^2)$ distribution.
- Compute bootstrap confidence intervals for 100 bootstrap samples.
- Repeat 100 times.
- How many times does the interval include the true mean?
- Repeat with $\sigma^2 = 4^2$. What happens to the Cls?
- Repeat with n = 50. What happens to the Cls?

Example

Data on calorie content in 20 different beef hot dogs from Consumer Reports (June 1986 issue):

186, 181, 176, 149, 184, 190, 158, 139, 175, 148,

152, 111, 141, 153, 190, 157, 131, 149, 135, 132

- Compute bootstrap intervals for the mean.
- (a) using the normality assumption.
- ▶ (b) usign bootstrap.