Applied Statistics

Sofia Triantafillou

sof.triantafillou@gmail.com

University of Crete
Department of Mathematics and Applied Mathematics

Lecture Summary

- ► The t-distributions (Chapter 8.4 without the pdf derivation)
- ► Confidence Intervals (Chapter 8.5-up to 8.5.6)
- Unbiased estimators (Chapter 8.7)

Example

Data on calorie content in 20 different beef hot dogs from Consumer Reports (June 1986 issue):

- $X_n = 156.85, S_n =$
- Let's say I want to answer $P(|\overline{X}_n \mu| < 5)$.
- ▶ If we know σ^2 , use CLT.

$$Z = \sqrt{n} \frac{\overline{X}_n - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

▶ If we don't know σ^2 ?

The t distributions

Let $Y \sim \chi_m^2$ and $Z \sim \mathcal{N}(0,1)$ be independent. Then the distribution of $X = \frac{Z}{\left(\frac{Y}{m}\right)^{1/2}}$ is called the t distribution with m degrees of freedom, or t_m .

Pdf of the t distribution:

$$\frac{\Gamma(\frac{m+1}{2})}{(m\pi)^{1/2}\Gamma(\frac{m}{2})} (1 + \frac{x^2}{m})^{-(m+1)/2}, -\infty < x < \infty$$

▶ No closed form CDF, tabulated at the end of statistics books

Relation to the normal distribution

- ▶ If $X \sim t_m$ then
 - ightharpoonup E(X) = 0 if m > 0, does not exist otherwise.
 - ▶ $Var(X) = \frac{m}{m-2}$ if m-2 > 0, does not exist otherwise.
 - As $n \to \infty$, t_n converges in pdf to $\mathcal{N}(0,1)$.

Relation to samples of a normal distribution

Theorem (8.4.2)

Let X_1, \ldots, X_n be a random sample from $\mathcal{N}(\mu, \sigma^2)$ and let \overline{X}_n be the sample mean, and define

$$\sigma' = \left(\frac{\sum_{i=1}^{n} (X_i - \overline{X}_n)^2}{n-1}\right)^{1/2}$$

Then $n^{1/2}(\overline{X}_n - \mu)/\sigma'$) follows the t distribution with n-1 degrees of freedom.

- Notice that σ' is not the MLE for σ , but $\left(\frac{n-1}{n}\right)^{1/2}\hat{\sigma}_0$
- ▶ For large n, $\hat{\sigma}_0$ and σ' are close.

Review

- Let X_1, \ldots, X_n be a random sample from $\mathcal{N}(\mu, \sigma^2)$
- ▶ If you know σ^2 but not μ

$$\frac{n\hat{\sigma}_0^2}{\sigma^2} \sim \chi_n^2$$
, where $\hat{\sigma}_0^2$ is the MLE for σ^2

▶ If you do not know μ or σ^2 , then

$$\frac{nS_n}{\sigma^2}\sim\chi^2_{n-1}, \text{ where } S_n=rac{\sum(X_i-\overline{X}_n)^2}{n} \text{ is the MLE for } \sigma^2$$

$$n^{1/2}(\overline{X}_n - \mu)/\sigma' \sim t_{n-1}$$
, where $\sigma' = \left(\frac{\sum (X_i - \overline{X}_n)^2}{n-1}\right)^{1/2}$

Back to our Example

Data on calorie content in 20 different beef hot dogs from Consumer Reports (June 1986 issue):

- $\overline{X}_n = 156.85, \ \sigma' = 98.69$
- ▶ How confident am I in my $\hat{\mu}$ estimate?
- I know that

$$U = \frac{n^{1/2}(\overline{X}_n - \mu)}{\sigma'} \sim t_{n-1}$$

▶ I can compute P(-c < U < c).

Confidence Intervals

▶ I can compute

$$P(\overline{X}_n - \frac{c\sigma'}{n^{1/2}} < \mu < \overline{X}_n + \frac{c\sigma'}{n^{1/2}})$$

Definition (Confidence Interval)

Let X_1,\ldots,X_n be a random sample from $f(x|\theta)$, where θ is unknown. Let $g(\theta)$ be a real-valued function, and let A and B be statistics where $P(A < g(\theta) < B) \geq \gamma \quad \forall \theta$. Then the random interval (A,B) is called a $100\gamma\%$ confidence interval for $g(\theta)$. If equality holds, the CI is exact.

- ► Notice: *A*, *B* are random variables.
- After a random sample is observed, A, B take specific values a and b. The interval (a, b) is then called the observed value of the confidence interval.

Confidence Intervals: Interpretation

- ▶ After observing our sample, we find that (a,b) is our 95%-CI for μ .
- ▶ This does not mean that $P(a < \mu < b) = 0.95$. In fact, we can not make such statements if we consider μ to be a number (frequentist view).
- ▶ We can think of our interpretation as repeated samples.
 - ► Take a random sample of size n from $\mathcal{N}(\mu, \sigma^2)$.
 - ▶ Compute (*a*, *b*).
 - Repeat many times.
 - There is a 95% chance for the random intervals to include the value of μ .

Confidence Intervals - the zipper plot

Confidence Intervals

- ▶ More generally we want to find $P(c_1 < U < c_2) = \gamma$
- Symmetric confidence intervals: Equal probability on both sides: $P(U \le c_1) = P(U \ge c_2) = \frac{1-\gamma}{2}$
- One-sided confidence interval: All the extra probability is on one side.
- $ightharpoonup c_1 = -\infty \text{ or } c_2 = \infty.$

Bias of an estimator

- ▶ Suppose that we use an estimator $\delta(\mathbf{X})$ to estimate the parameter $g(\theta)$.
- Properties of an estimator (so far): Consistency, invariance.
- ► Another property of an estimator: unbiasedness.

Bias of an estimator

The bias of an estimator $\delta(\mathbf{X})$ for the parameter $g(\theta)$ is defined as

$$Bias_{\theta}(\delta(\mathbf{X})) = E_{\theta}[\delta(X)] - g(\theta).$$

If $Bias_{\theta}(\delta(\mathbf{X})) = 0 \forall \theta$ then $\delta((X))$ is called an unbiased estimator of $g(\theta)$. Otherwise it is a biased estimator.

Compute the bias of MLE estimates for the Normal distribution

- **Example:** Bias of \overline{X}_n .
- ightharpoonup Bias of $\hat{\sigma}_0^2$.
- ightharpoonup Bias of S_n .
- ▶ Consider two estimators for the mean: \overline{X}_1 and $\frac{\sum_i X_i}{n-1}$
- ▶ Which one is unbiased? Which one do you prefer?

Mean squared error of an estimator

- ► MSE: $E[(\theta \hat{\theta})^2]$
- Now much are you going to pay if you pay your errors squared and you guess $\hat{\theta}$.
- $E[(\theta \hat{\theta})^2] = Var(\hat{\theta}) + Bias^2(\hat{\theta})$
- ▶ We want estimators with low variance and low bias.
- Bias-variance trade-off is an important concept in ML.