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Lecture Summary

» The t-distributions (Chapter 8.4 - without the pdf derivation)
» Confidence Intervals (Chapter 8.5-up to 8.5.6)
» Unbiased estimators (Chapter 8.7)
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Example

Data on calorie content in 20 different beef hot dogs from
Consumer Reports (June 1986 issue):

186, 181, 176, 149, 184, 190, 158, 139, 175, 148,

152,111, 141, 153,190, 157, 131, 149, 135, 132

> X, = 156.85, S, =
> Let's say | want to answer P(|X,, — u| < 5).
» If we know &2, use CLT.

X, —p
(o

Z=a

~ N(0,1)
» If we don’t know o2?
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The t distributions

Let Y ~ x2,and Z ~ N(0,1) be independent. Then the distribution
of X = Ll/z is called the ¢ distribution with m degrees of freedom,

()

» Pdf of the ¢ distribution:

or t,,.

F(L‘H) 72 .

» No closed form CDF, tabulated at the end of statistics books
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Relation to the normal distribution

> If X ~t,, then

> E(X)=0if m >0, does not exist otherwise.
> Var(X) = -5 if m — 2> 0, does not exist otherwise.
> Asn — oo, t, converges in pdf to A(0,1).
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Relation to samples of a normal distribution

Theorem (8.4.2)

Let X1,...,X, be a random sample from N (u,c?) and let X,, be
the sample mean, and define

o = (2?1()@ — Xn)2>1/2

n—1

Then n'/2(X,, — u)/o’) follows the t distribution with n — 1 degrees
of freedom.

» Notice that ¢’ is not the MLE for o, but (”—_1)1/260

n
» For large n, 69 and o’ are close.
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Review

» Let Xi,...,X, be arandom sample from N (u,o?)
» If you know o2 but not

néd
— ~ Xp, where 63 is the MLE for o
g

» If you do not know p or o2, then

Xi - Xn 2 .
— Xi_l, where S,, = M is the MLE for o2
o n

> (X — Xn)2)1/2

(X, — )/’ ~ tn_1, where ¢’ = ( —
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Back to our Example

Data on calorie content in 20 different beef hot dogs from
Consumer Reports (June 1986 issue):

186,181, 176, 149, 184, 190, 158, 139, 175, 148,

152,111,141, 153,190, 157, 131, 149, 135, 132

> X, =156.85, o/ = 98.69
» How confident am | in my /i estimate?

» | know that

nl/Q(Yn _ N)
::““‘7;7““* ~tn—1

» | can compute P(—c < U < ¢).
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Confidence Intervals

» | can compute

— co’ co’

P(X, — iR <pu< X+ 1/2)

Definition (Confidence Interval)

Let Xi,...,X,, be a random sample from f(z|0), where 6 is un-
known. Let g(f) be a real-valued function, and let A and B be
statistics where P(A < ¢g(f) < B) > ~ V6. Then the random
interval (A, B) is called a 100v% confidence interval for g(6). If
equality holds, the Cl is exact.

» Notice: A, B are random variables.

> After a random sample is observed, A, B take specific values a
and b. The interval (a,b) is then called the observed value of
the confidence interval.
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Confidence Intervals: Interpretation

> After observing our sample, we find that (a, b) is our 95%-Cl
for p.

» This does not mean that P(a < < b) = 0.95. In fact, we
can not make such statements if we consider i to be a number
(frequentist view).

» We can think of our interpretation as repeated samples.

> Take a random sample of size n from N (u, 0?).

»> Compute (a,b).

» Repeat many times.

» There is a 95% chance for the random intervals to include the
value of .
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Confidence Intervals - the zipper plot
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Confidence Intervals

» More generally we want to find P(¢c; < U < ¢2) =7

» Symmetric confidence intervals: Equal probability on both
sides: P(U <¢1)=P(U > ¢3) = 1777

» One-sided confidence interval: All the extra probability is on
one side.

» ¢ = —00 or cg = .
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Bias of an estimator

» Suppose that we use an estimator §(X)) to estimate the
parameter g(6).

» Properties of an estimator (so far): Consistency, invariance.

» Another property of an estimator: unbiasedness.

Bias of an estimator
The bias of an estimator 6(X) for the parameter g() is defined as

Biasg(3(X)) = Ega(X)] — g(0).

If Biasg(d(X)) = 0V6 then 6((X)) is called an unbiased estimator
of g(#). Otherwise it is a biased estimator.
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Compute the bias of MLE estimates for the Normal
distribution

Example: Bias of X,,.

>
> Bias of 3.
» Bias of 5,,.

. . - e
» Consider two estimators for the mean: X and <5
>

Which one is unbiased? Which one do you prefer?
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Mean squared error of an estimator

> MSE: E[(0 — 0)?]

> How much are you going to pay if you pay your errors squared
and you guess 6.

> E[(0 — 6)%) = Var() + Bias(f)

We want estimators with low variance and low bias.

v

» Bias-variance trade-off is an important concept in ML.
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