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Lecture Summary

▶ Statistical Inference (Chapter 7.1).
▶ Frequentist Inference (Chapter 7.1).
▶ Maximum Likelihood Estimation (Chapter 7.5).
▶ Properties of MLE estimators (Chapter 7.6).
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Statistical Inference

In our last lecture, we saw several distributions with probability
functions: f(x|θ), where θ for parameters, taking values in some
parameter space Ω.

Examples
▶ The height of a student is approximately normal with mean θ

and some known variance.
▶ The number of people that have a disease out of a group of N

people follows the Binomial (N, θ) distribution.
▶ The lifetime of an electronic component follows an exponential

distribution with rate θ.

In practice, we do not know θ.
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Statistical Inference

What can we infer about θ given the observed data?
Assuming that we observe random variables X1, . . . , Xn following
some distribution with parameter θ, what conclusions can we draw
about parameter θ?

Statistical Inference Tasks
▶ Prediction.
▶ Estimation.
▶ Decision problems (e.g., Hypothesis testing).
▶ Experimental Design.
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Formalizing Statistical Inference

Statistical Model
▶ An identification of random variables of interest
▶ A specification of a distribution or a family of possible joint

distributions for these variables.

Statistical Inference
A procedure that produces a probabilistic statement for some or all
parts of a statistical model.
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Formalizing Statistical Inference

Statistic
Suppose that the observable random variables of interest are
X1, . . . , Xn. Let r be an arbitrary real-valued function of n real
variables. Then the random variable T = r(X1, . . . , Xn) is a statis-
tic.
Examples:
▶ The mean of X1, . . . , Xn: T = 1

n

∑
iXi.

▶ The maximum of X1, . . . , Xn: T = max{X1, . . . , Xn}.
▶ A constant, e.g., T=3.
▶ Absolute difference of the mean from 175:

T = | 1n
∑

iXi − 175|.
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Estimation

Estimate (predict) the unknown parameter θ. E.g. We estimated
the prevalence of the disease as θ̂.
One of the most common tasks in statistical inference. Two
schools:
▶ Bayesian inference: Treat θ as a random variable.
▶ Frequentist inference: Treat θ as a number.

In this course we will focus on frequentist approaches.
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Likelihood

Likelihood function: f(x|θ),L(x; θ)
The likelihood function (often simply called the likelihood) describes
the joint probability of the observed data x1, . . . , xn as a function of
the parameters θ of the chosen statistical model.

▶ Assume you test 10 people for a disease, and you get the
following result (0:negative, 1:positive)

▶ x1 = 0, x2 = 0, x3 = 0, x4 = 1, x5 = 1, x6 = 0, x7 = 0, x8 =
1, x9 = 0, x10 = 0

▶ Let Xi be the outcome of the i-th patient:
▶ Xi ∼ Bernoulli(θ).
▶ f(x1, . . . , x10|θ) =, for θ = 0.2, θ = 0.8.
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Maximum Likelihood Estimation

Maximum Likelihood Estimator
For any given observations x we pick the θ ∈ Ω that maximizes
f(x|θ).

Maximum Likelihood Estimate
For given data X = x, the maximum likelihood estimate (MLE) will
be a function of θ.

▶ Estimator Θ̂(X) is a function mapping the random sample X
to the parameter space.

▶ Estimate θ̂ is a value of the estimator for a particular sample.
▶ Sometimes θ̂ is to denote both estimator and estimate.

9 / 15



Log likelihood

For numerical reasons (e.g., avoid multiplying numbers in [0,1]), it
is often easier to maximize the log likelihood LL(θ) = log(f(x|θ)).

Log properties.
Logarithm is monotonic, so argmaxxf(x) = argmaxθlog(f(x)).

log(ab) = log(a) + log(b)

log(
∏
i

f(x)) =
∑
i

log(f(x))

log(an) = nlog(a)
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MLE estimation

▶ Assume you test 10 people for a disease, and you get the
following result (0:negative, 1:positive)

▶ x1 = 0, x2 = 0, x3 = 0, x4 = 1, x5 = 1, x6 = 0, x7 = 0, x8 =
1, x9 = 0, x10 = 0

▶ Let Xi be the outcome of the i-th patient:
▶ Xi ∼ Bernoulli(θ).
▶ Find the MLE for θ.
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Maximizing functions

How do we maximize a function?
A point (x, f(x)) for which:

df

dx
= 0,

d2f

dx2
< 0

Corresponds to a maximum.
▶ May not be unique.
▶ For curved exponential families, the log likelihood is concave.

▶ Unique maximum!
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Properties of Estimators

Theorem (Invariance)
If θ̂ is the MLE of θ and g(θ) is a function of θ then g(θ̂) is the MLE
of g(θ).

Example
If p̂ is the MLE for p̂ in the Binomial(n, p), then the MLE for the
odds p

1−p is p̂
1−p̂ .
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Properties of Estimators

Definition (Consistency)

A sequence of estimators that converges in probability to the
unknown value of the parameter being estimated, as n → ∞ is
called a consistent sequence of estimators.

Consistency of MLEs
Under some conditions (typically satisfied in practical problems) the
sequence of M.L.E.’s is a consistent sequence of estimators.
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Maximum Likelihood Estimation

Example: M.L.E. of normal with known variance
▶ Assume you observe the heights of n students.
▶ Let Xi be the height of the i-th student you picked.
▶ Xi ∼ Norm(θ, 9) (we assume we know the variance).
▶ We get data x1, . . . , xn.
▶ Find the MLE of θ (as a function of the data).
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