Applied Statistics

Sofia Triantafillou
sof.triantafillou@gmail.com

University of Crete
Department of Mathematics and Applied Mathematics

Lecture Summary

- Useful Families of Distributions (all in Chapter 5):
- Discrete: Bernoulli, Binomial, Geometric.
- Poisson Distribution
- Exponential Distribution.
- Normal Distribution.
- Recap: Central Limit Theorem.

Families of Distributions

- Probability function notation: $f(x \mid$ parameters $)$.
- Parameter space.
- Mean, variance.
- Types of experiments.

Bernoulli distributions

A r.v. X has the Bernoulli distribution with parameter p if $P(X=$ $1)=p$ and $P(X=0)=1-p$. The probability function (pf) of X is

$$
f(x \mid p)= \begin{cases}p^{\times}(1-p)^{1-x} & x=0,1 \\ 0 & \text { otherwise }\end{cases}
$$

- An experiment with two outcomes: "success", "failure", $\mathrm{X}=$ number of successes.
- Parameter space: $p \in[0,1]$.
- $E(X)=p, \operatorname{Var}(X)=p(1-p)$.

Binomial distributions

A r.v. X has the Binomial distribution with parameters n and p a if the probability function (pf) of X is

$$
f(x \mid p)= \begin{cases}\binom{n}{x} p^{\times}(1-p)^{n-x} & x=0,1, \ldots, n \\ 0 & \text { otherwise }\end{cases}
$$

- n repetitions of an experiment with two outcomes: "success", "failure", $X=$ number of successes.
- Parameter space: n positive integer, $p \in[0,1]$.
- $E(X)=, \operatorname{Var}(X)=$.

Geometric distributions

A r.v. X has the Geometric distribution with parameters n and p a if the probability function (pf) of X is

$$
f(x \mid p)= \begin{cases}f(x \mid p)=p(1-p)^{x} & x=0,1, \ldots n \\ 0 & \text { otherwise }\end{cases}
$$

- An experiment with two outcomes: "success", "failure", $\mathrm{X}=$ number of failures before the first success.
- Parameter space $p \in[0,1]$.
- $E(X)=\frac{1-p}{p}, \operatorname{Var}(X)=\frac{1-p}{p^{2}}$.

Geometric distributions

Geometric distributions are memoryless:
Theorem
Let X have the geometric distribution with parameter p, and let
$k \geq 0$. Then for every integer $t \geq 0$,

$$
P(X=k+t \mid X \geq k)=P(X=t)
$$

The Poisson distributions

Let $\lambda>0$. A random variable X follows the Poisson distribution with mean λ if the p.m.f. of X is as follows:

$$
f(x \mid \lambda)= \begin{cases}\frac{e^{-\lambda} \lambda^{x}}{x!} & x=0,1,2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

- Parameter space: $\lambda \in[0, \infty)$.
- $E(X)=p, \operatorname{Var}(X)=p(1-p)$

The Poisson Distribution

The Poisson distribution is useful for modeling uncertainty in counts / arrivals.

Examples:

- How many calls arrive at a switch board in one hour?
- How many busses pass while you wait at the bus stop for 10 \min ?
- How many customers will enter a store in 15 minutes?

Properties of the Poisson

Theorem (Sum of Poissons is a Poisson.)

Let $X_{1}, \ldots X_{k}$ are independent and if X_{i} has the Poisson distribution with mean $\lambda_{i}(i=1, \ldots, k)$, then the sum $X_{1}+\cdots+X_{k}$ has the Poisson distribution with mean $\lambda_{1}+\cdots+\lambda_{k}$.

Theorem (Approximation to the Binomial)
For each integer n and each $0<p<1$, let $f(x \mid n, p)$ denote the $p f$ of the Binomial distribution with parameters n and p, and let $f(x \mid \lambda)$ denote the pf of the Poisson distribution with mean λ. Let $\left\{p_{n}\right\}_{1}^{\infty}$ be a sequence of numbers between 0 and 1 such that $\lim _{n \rightarrow}=\lambda$. Then

$$
\lim _{n \rightarrow \infty} f_{X_{n}}\left(x \mid n, p_{n}\right)=f(x \mid \lambda)
$$

When the value of n is large, and the value of p is very small, the Poisson with mean $n p$ is a good approximation for the Binomial with parameters n and p.

The Exponential Distributions

Let $\beta>0$. A random variable X follows the exponential distribution with parameter β if it has a continuous distribution with pf .:

$$
f(x \mid \beta)= \begin{cases}\beta e^{-\beta x} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

- Parameter space: $\beta \in[0, \infty)$.
- Find $E(X), \operatorname{Var}(X)$.

Normal Distributions

- Standard normal: $\mathcal{N}(0,1): f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)$
- Normal with mean μ and variance σ^{2} :

$$
\begin{aligned}
& \mathcal{N}\left(\mu, \sigma^{2}\right): f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right) \\
& E(X)=\mu, \operatorname{Var}(X)=\sigma^{2}
\end{aligned}
$$

Theorem (Linear transformations of a normal are normal) If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $\alpha X+\beta \sim N\left(\alpha \mu+\beta, \alpha^{2} \sigma^{2}\right)$

Theorem (The sum of independent normals is normal) If the random variables X_{1}, \ldots, X_{k} are independent and if $X_{i} \sim$ $N\left(\mu_{i}, \sigma_{i}^{2}\right)$ then $X_{1}+\cdots+X_{k} \sim N\left(\mu_{1}+\cdots+\mu_{k}, \sigma_{1}^{2}+\cdots+\sigma_{k}^{2}\right)$

Calculating probabilities with the Normal Distribution

- We want to estimate $P(X \leq a)$ when $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$
- No closed form for $\int_{-\infty}^{a} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right) d t$
- If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$
- $P(X \leq a)=P\left(\frac{X-\mu}{\sigma} \leq \frac{a-\mu}{\sigma}\right)=\Phi\left(\frac{a-\mu}{\sigma}\right)$.

Central Limit Theorem

Theorem (Central Limit Theorem)
If the random variables X_{1}, \ldots, X_{n} form a random sample of size n from a given distribution with mean μ and variance $\sigma^{2}\left(0<\sigma^{2}<\right.$ $\infty)$, then for each fixed number x

$$
\lim _{n \rightarrow \infty} P\left(\sqrt{n} \frac{\bar{X}_{n}-\mu}{\sigma}\right)=\Phi(x),
$$

where Φ denotes the c.d.f. of the standard normal distribution.

In practice, it often holds for small n.

Frame Title

- We need to test 1000 people for a rare disease (affects two in 1000 people).
- Each test requires a small amount of blood, and it is guaranteed to detect the disease if it is anywhere in the blood.
- Strategy 1: Test 1000 people
- Strategy 2: Split in 10 groups of 100, combine their bloods and test them. (10 tests). If any of them tests positive, test all people in that group.
- What is the expected number of tests for Strategy 2?

