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Lecture Summary

▶ The sample mean (Chapter 6.2 - Properties of the sample
mean).

▶ Central Limit Theorem (Chapter 6.3).
▶ Statistical Inference (Chapter 7.1).
▶ The likelihood function (part of Chapter 7.2).
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Recap: Normal Distribution

▶ Standard normal: N (0, 1) : fX (x) = 1
σ
√

2π
exp

(
− x2

2

)
▶ Normal with mean µ and variance σ2:

N (µ, σ2) : fX (x) =
1

σ
√

2π
exp

(
−1

2

( x−µ
σ

)2 )
▶ E (X ) = µ, Var(X ) = σ2.

Theorem (Linear transformations of a normal are normal)
If X ∼ N (µ, σ2), then αX + β ∼ N(αµ+ β, α2σ2)

Theorem (The sum of independent normals is normal)
If the random variables X1, . . . ,Xk are independent and if Xi ∼
N(µi , σ

2
i ) then X1 + · · ·+ Xk ∼ N(µ1 + · · ·+ µk , σ

2
1 + · · ·+ σ2

k)
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Sample Mean

Definition (Sample mean)
Let X1, . . .Xn be random variables. Their average

X n =
X1 + · · ·+ Xn

n

is called their sample mean.

▶ Find E (X n) and Var(X n) when Xi are independent and follow
the same distribution.
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Properties of the sample mean

Theorem (Mean and variance of the sample mean)
Let X1, . . .Xn be a random∗ sample from a distribution with mean
µ and variance σ2. Then E (X n) = µ, and Var(X n) = σ2/n.

∗also known as: X1, . . . ,Xn are independent and identically
distributed (i.i.d).
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Central Limit Theorem

▶ Sn =
∑n

i=1 Xi , mean nµ, variance nσ2.

▶ X̄n = Sn
n , mean µ variance σ2

n .
▶ Sn√

n
, mean µ

√
n, variance σ2.

▶ Zn = Sn−nµ√
nσ

=
√
n(X̄n−µ)

σ , mean 0, variance 1.
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Central Limit Theorem

Theorem (Central Limit Theorem)
If the random variables X1, . . . ,Xn form a random sample of size n
from a given distribution with mean µ and variance σ2 (0 < σ2 <
∞), then for each fixed number x

limn→∞P(
√
n
X̄n − µ

σ
≤ x) = Φ(x),

where Φ denotes the c.d.f. of the standard normal distribution.

OR
Sn = X1 + . . .Xn, Zn = Sn−nµ√

nσ
, Z ∼ N (0, 1).

For every z ,
limn→∞P(Zn ≤ z) = P(Z ≤ z)
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Central Limit Theorem

▶ is pretty great! Holds for ANY type of distribution of Xi with
finite variance, as long as Xi are i.i.d.
▶ Results for non i.i.d. under stronger assumptions.

▶ Convergence to CDF, not PDF.
▶ In practice, we use pdf for illustration.

▶ Proof requires moment generating functions.
▶ Is a good approximation even for small n in practice (see

recitation tomorrow).
▶ Has many practical uses.
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Central Limit Theorem: Approximation for the Binomial.

▶ X1, . . . ,Xn ∼ Bernoulli(p).
▶ Sn ∼ Binom(n, p)

▶ Sn−nµ√
nσ

= Sn−np√
np(1−p)

∼ N (0, 1)

▶ Example: Assume Xi ∼ Bernoulli(0.5), n = 36. Find
P(”no more than 21 successes”)

Correction for continuity:
If a continuous variable Y with pdf g provides a good approximation
for the discrete variable X , with pmf f, then

P(a ≤ X ≤ b) = P(a− 1/2 ≤ Y ≤ b + 1/2)
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CDF of the normal

z 0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09
0,9 0,8159 0,8185 0,8212 0,8238 0,8263 0,8289 0,8314 0,8339 0,8364 0,8389
1 0,8413 0,8437 0,8461 0,8484 0,8508 0,8531 0,8554 0,8576 0,8599 0,8621
1,1 0,8643 0,8665 0,8686 0,8707 0,8728 0,8749 0,8769 0,879 0,881 0,8829
1,2 0,8849 0,8868 0,8887 0,8906 0,8925 0,8943 0,8961 0,8979 0,8997 0,9014
1,3 0,9032 0,9049 0,9065 0,9082 0,9098 0,9114 0,9130 0,9146 0,9162 0,9177
1,4 0,9192 0,9207 0,9222 0,9236 0,9250 0,9264 0,9278 0,9292 0,9305 0,9318
1,5 0,9331 0,9344 0,9357 0,9369 0,9382 0,9394 0,9406 0,9417 0,9429 0,9440
1,6 0,9452 0,9463 0,9473 0,9484 0,9495 0,9505 0,9515 0,9525 0,9535 0,9544
1,7 0,9554 0,9563 0,9572 0,9581 0,9590 0,9599 0,9608 0,9616 0,9624 0,9632
1,8 0,9640 0,9648 0,9656 0,9663 0,9671 0,9678 0,9685 0,9692 0,9699 0,9706
1,9 0,9712 0,9719 0,9725 0,9732 0,9738 0,9744 0,975 0,9755 0,9761 0,9767
2 0,9772 0,9777 0,9783 0,9788 0,9793 0,9798 0,9803 0,9807 0,9812 0,9816
2,1 0,9821 0,9825 0,983 0,9834 0,9838 0,9842 0,9846 0,985 0,9853 0,9857
2,2 0,9861 0,9864 0,9867 0,9871 0,9874 0,9877 0,9880 0,9884 0,9887 0,9889
2,3 0,9892 0,9895 0,9898 0,9901 0,9903 0,9906 0,9908 0,9911 0,9913 0,9915
2,4 0,9918 0,9920 0,9922 0,9924 0,9926 0,9928 0,9930 0,9932 0,9934 0,9936
2,5 0,9937 0,9939 0,9941 0,9943 0,9944 0,9946 0,9947 0,9949 0,9950 0,9952
2,6 0,9953 0,9954 0,9956 0,9957 0,9958 0,9959 0,9960 0,9962 0,9963 0,9964
2,7 0,9965 0,9966 0,9967 0,9968 0,9969 0,9970 0,9971 0,9972 0,9972 0,9973
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Example

▶ You are doing a poll on "ratio of people agree with the
lockdown measures".

▶ True ratio: p, estimate X̄n after asking n people.
▶ You want |X̄n − p| to be small (e.g., less than 1%)
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Example

▶ You are doing a poll on "ratio of people agree with the
lockdown measures".

▶ True ratio: p, estimate X̄n after asking n people.
▶ You want |X̄n − p| to be small (e.g., less than 1%)
▶ You want to estimate

P(|X̄n − p| ≥ 0.01) ≤ 0.05

▶ Apply CLT:
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Recap

Probability and Random Variables
Sofar, we have seen how random variables can describe some at-
tributes of a random experiment, and how we can use the language
of probability to describe the distributions of random variables, and
some of their large sample properties.

Next
We will now start talking about how we can make inferences about
the distributions of random variables based on our observations
(data). This is the area of statistical inference.
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Statistical Inference

So far: We have seen statistical models in the form of probability
distributions: f (x |θ)
We use: θ for parameters, Ω for the parameter space.

Examples
▶ The height of a student is approximately normal with mean θ

and some known variance.
▶ The number of people that have a disease out of a group of N

people follows the Binomial (N, θ) distribution.
▶ More distributions tomorrow.

In practice, we do not know θ.
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Statistical Inference

What can we infer about θ given the observed data?
Assuming that we observe random variables X1, . . . ,Xn following
some distribution with parameter θ, what conclusions can we draw
about parameter θ?

Example
Say I take a random sample of 100 people and test them all for a
disease. If 3 of them have the disease, what can I say about θ = the
prevalence of the disease in the population?
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Statistical Inference

Example
Say I take a random sample of 100 people and test them all for a
disease. If 3 of them have the disease, what can I say about = the
prevalence of the disease in the population?

▶ Say I estimate θ as 3/100 = 0.3 or 3%.
▶ How sure am I about this number?
▶ I want uncertainty bounds on my estimate.
▶ Am I confident that the prevalence of the disease is higher

than 2% ?
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Statistical Inference tasks

Prediction
Predict random variables that have not yet been observed. e.g., if we
test 40 more people for the disease, how many people do we predict
have the disease?

Estimation
Estimate (predict) the unknown parameter θ.
e.g., we estimated the prevalence of the disease as θ̂.
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Statistical Inference tasks

Statistical Decision Problems
Hypothesis testing, decision theory e.g., If the disease affects 2% or
more of the population, the state will launch a costly public health
campaign. Can we be confident that θ is higher than 2% ?

Experimental Design
What and how much data should we collect?
e.g., how do I select people in my clinical trial? How many do
I need to make a decision based on that data? Often limited by
budget/ethical constraints.
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