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Lecture Summary

▶ Discrete Random Variables and Distributions (3.1).
▶ Expectation (4.1)
▶ Properties of Expectation (4.2)
▶ Variance (4.3)
▶ Joint, Conditional, Marginal Distributions (3.4 − 3.6)
▶ Conditional Expectation (4.7)

in parentheses: Chapters in the Degroot and Schervish book.
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Random Variables

Random Variable
A random variable is a mapping X : Ω → R that assigns a real
number X (ω) to each outcome ω.

Example
Consider the experiment of flipping a coin 10 times, and let X (ω)
denote the number of heads in the outcome ω. For example, if
ω = HHHTHHTTHT , X (ω) = 6.

3 / 17



Random Variables

▶ Why do we need random variables? (easier to work with than
original sample space)

▶ A random variable is NOT a variable (in the algebraic sense).
▶ A random variable takes a specific value AFTER the

experiment is conducted.

Notation
▶ Letter near the end of the alphabet since it is a variable in the

context of the experiment.
▶ Capital letter to distinguish from algebraic variable.
▶ Lower case denotes a specific value of the random variable.
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Random Variables

▶ An assignment of a value (number) to every possible outcome.
▶ Strictly speaking: A function from the sample space Ω to the

real numbers.
▶ It can take discrete or continuous values.
▶ We will start with discrete values to build our intuition, and

then proceed to continuous.
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Probability mass function

Definition (Probability (mass) function)
If a random variable X has a discrete distribution, the probability
function of X is defined as the function pX such that

PX (x) = P(X = x) = P(ω ∈ Ω s.t. X (ω) = x).

The closure of the set x : PX (x) > 0 is called the support of the
(distribution of) X .
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Computing Probability mass functions
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Bernoulli distribution

Some distributions come up so often, that they have a name.

Definition
A random variable X that only takes two values 0 (failure) and 1
(success) with P(X = 1) = p has the Bernoulli distribution with
parameter p.
Example: You flip a coin one time. X is the result of the coin flip.
You can define "Heads" as success and "Tails" as failure (or the
other way around, it does not matter) Then X follows a Bernoulli
distribution with parameter p.

PX (x) = px(1 − p)1−x
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Expectation

Definition
The expected value or mean or first moment of X is defined to
be

E (X ) =
∑
x

xPx(x)

assuming that the sum is well-defined.

▶ We can think of the expectation as the average of a very large
number of independent draws from the distribution (IID
draws).

▶ The fact that E (X ) =
∑n

i=1 Xi is actually a very important
theorem we will discuss later.
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Examples

▶ Let X ∼ Bernoulli(p).E (X ) =?

▶ Flip a fair coin twice. Let X be the number of heads. E (X ) =?
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Expectation of a function of a random variable

Sometimes we are interested in the expectation of a function of a
random variable Y = r(X ). One way to find the expectation of this
random variable:
▶ Find its pmf PY (y)

▶ Compute
∑

y yPY (y)

e.g. Assume X 2 is a discrete random variable with possible values
{−3,−1, 0, 1, 3} with probabilities {1

3 ,
1
6 ,

1
6 ,

1
6 ,

1
6}. Let Y = X 2.

What is the expectation of Y ?
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Law Of The Unconscious Statistician
A simple way to compute the expectation of Y in the example
above, or any function of random variables, is the law of
unconscious statistician (LOTUS).

Theorem
Let Y = r(X ). Then

E (Y ) = E (r(x)) =
∑
all x

r(x)Px(x)

if the mean exists.

Properties of Expectation
▶ E (a) = a

▶ E (aX ) = aE (X )

▶ E (aX + b) = aE (X ) + b

▶ But E (g(X )) ̸= g(E (X )) in most cases!
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Linearity of Expectation

Linearity of expectation is the property that the expected value of
the sum of random variables is equal to the sum of their individual
expected values, regardless of whether they are independent.

Theorem
Let X1, . . . ,Xn be a set of random variables. Then

E [X1 + · · ·+ Xn] = E [X1] + · · ·+ E [Xn]

Prove it for the case of two discrete variables.
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Variance of a random variable

Sometimes we are also interested in quantifying how far from the
mean

Definition (Variance)
The variance of X is defined to be

Var(X ) = E [(X − E (X ))2]

assuming that the sum is well-defined.

Properties of Variance
▶ Var(a) = 0
▶ Var(aX ) = a2Var(X )

▶ Var(aX + b) = a2Var(X )
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Examples

▶ Let X ∼ Bernoulli(p).Var(X ) =?

▶ Flip a fair coin twice. Let X be the number of heads.
Var(X ) =?
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Joint PMFs
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PX ,Y (x , y) = P(X = x ,Y = y) = P(X = x&Y = y)∑
x

∑
yPX ,Y (x , y) = 1 (still a probability mass function)

Marginal Probability:PX (x) =
∑
y

PX ,Y (x , y) (sum over all possible y)
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Conditional PMFs

x

y
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Conditional Probability:PX |Y (x |y) =
PX ,Y (x , y)

PY (y)

e.g., PX |Y (x |y = 2) = {2/9, 4/9, 1/9, 2/9}∑
x

PX |Y (x |y) = 1 (still a probability mass function)
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