Applied Statistics

Sofia Triantafillou

sof.triantafillou@gmail.com

University of Crete Department of Mathematics and Applied Mathematics

February 27, 2022

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – のへで

1/29

Today: Probability

What is probability?

Probability

is a language for quantifying uncertainty. It is a way to quantify how likely something is to occur.

Experiment

An experiment is any real or hypothetical process, in which the **possible outcomes** can be identified ahead of time. Events are **sets** of possible outcomes. Probability is then a way to describe how likely each event is.

Possible experiments

We toss a coin 2 times.
 Possible Outcomes:
 Sample Space:
 Examples of Events:
 Probability of each event:

 We measure the temperature. Possible Outcomes: Sample Space: Examples of events: Probability of each event:

Sample Spaces

- The sample space is Ω is the set of possible outcomes of an experiment.
- $\omega \in \Omega$ is are called **sample outcomes**, or **elements**.
- Subsets of Ω are called events.

Example:

Coin tossing: If you toss a coin twice then

 $\Omega = \{HH, HT, TH, TT\}$

The event that both tosses are heads are: The event that the first toss is heads is: Let ω be the outcome of measuring temperature. A sample space for this experiment is $\Omega = (-\infty, \infty)$. Is this accurate?

- What are the elements of Ω?
- Example events: temperature is 15.5.
- Example events: temperature is at least 10 but lower than 20 is A = [10, 20).

Probability

We want to assign a real number $\mathbb{P}(A)$ to every event A which represents how likely event A is to occur. This is called the probability of A.

- Axiom 1: $\mathbb{P}(A) \ge 0$ for every A
- Axiom 2: $\mathbb{P}(\Omega) = 1$

Axiom 3: for a finite sequence A_1, A_2, \ldots, A_n of disjoint events

$$\mathbb{P}(\bigcup_{i=1}^{\infty}A_i)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

Probability Measure

A function from a σ -algebra \mathbb{A} to [0,1] is called a probability measure if it satisfies the following:

- Axiom 1: $\mathbb{P}(A) \ge 0$ for every A
- Axiom 2: $\mathbb{P}(\Omega) = 1$

Axiom 3: for an infinite sequence A_1, A_2, \ldots of disjoint events

$$\mathbb{P}(\bigcup_{i=1}^{\infty}A_i)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

Probability Space

Ok so now we have:

- A sample space Ω for our experiment.
- A set of events A (measurable subsets of Ω to which we can assign a probability without running into problems with the axioms of probability).
- A function from the σ-algebra A to [0, 1] that indicates how likely an element of A is to occur.

The triplet $(\Omega, \mathcal{A}, \mathbb{P})$ is called a **probability space**.

What is probability?

Interpretation of Probability:

Frequency

Degree of belief

Properties of Probabilities (1)

Based on the axioms of probability, we can derive several properties:

► The probability of an impossible event is 0:

 $P(\emptyset) = 0$

Axiom 3 also holds for finite sequences of events:

$$P(\bigcup_{i=1}^{N} A_i) = \sum_{i=1}^{N} P(A_i)$$

(page 17 of DGS)

Properties of Probabilities (2)

The law of total probability

Let B_1, \ldots, B_n be a partition of the sample space. Then for any event A,

$$P(A) = \sum_i P(A \cap B_i)$$

Let's prove it for a very simple partition: B, B^c . Reminder:

- Set partitioning: $A = (A \cap B) \cup (A \cap B^c)$.
- ▶ Distribution law: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

•
$$(A \cap B), (A \cap B^c)$$
 are disjoint.

Properties of Probabilities (3)

Lemma

```
For any events A and B,
```

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

Proof.

Example.

Two coin tosses. Let H_1 be the event that heads occurs on toss 1 and let H_2 be the event that heads occurs on toss 2. If all outcomes are equally likely, what is the $\mathbb{P}(H_1 \cup H_2)$?

Discrete Probability Spaces.

For uncountable sample spaces, we need σ -algebras (which do not include all subsets of Ω) to avoid mathematical difficulties. Finite and countable sample spaces are much easier to think about:

Examples

- Consider a single toss of a coin. If we believe that heads (H) and tails (T) are equally likely, find an appropriate probability model.
- Consider a single roll of a die. if we believe that all six outcomes are equally likely, find an appropriate probability model.
- We toss an unbiased coin n times. What is an appropriate probability model?

Counting in a uniform (simple) probability space

In discrete sample spaces, if all outcomes of an experiments are considered equally likely, then for each event A,

$$\mathbb{P}(A) = rac{|A|}{|\Omega|}$$

Example:

We toss a (fair) coin twice. Ω has 36 elements: $11,12,\ldots,16,21,\ldots,26,\ldots,61,\ldots,66$

Let's say we are interested in the event "at least one 6" To assign a probability to each possible event, we need to be able to count: The number of points in Ω and A. To do so, we need some combinatorial methods.

Multiplication rule

General counting rule:

- r steps
- *n_r* choices at each step
- Then the number of choices are $n_1 \times n_2 \times \cdots \times n_r$

Permutations/Combinations

Permutations

Number of distinct ways to order *n* objects: *n*!

Combinations

Number of distinct ways of choosing k elements from a collection of n objects:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

Independent events

Sometimes we know that the events are independent based on the construction of the experiment (e.g., we know that the coin flipping has no memory)

Definition

Two events A and B are independent if

 $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$

We denote this as

 $A \perp\!\!\!\perp B$

A set of events $\{A_i : i \in I\}$ is independent if

 $\mathbb{P}(\cap_{i\in J}A_i)=\prod\mathbb{P}(A_i)$

for every finite subset J of I.

Independent events

We already discussed how if we flip a coin twice, the probability of two heads is $\frac{1}{2} \times \frac{1}{2}$. This is because we consider the two tosses as independent. This means, the outcome of the first coin flip does not affect the outcome of the second flip.

Definition

Two events A and B are independent if

 $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$

We denote this as

 $A \perp\!\!\!\perp B$

A set of events $\{A_i : i \in I\}$ is independent if

$$\mathbb{P}(\bigcap_{i\in J}=\prod\mathbb{P}(A_i))$$

for every finite subset J of I.

Independence is not always intuitive

- If we flip a coin twice, we typically assume that the flips are independent (i.e., the coin has no memory of previous flip).
- Sometimes, independence just comes up. Example: We are roll a fair die and we are interested in the following two events: A : "The outcome is an even number" B : "The outcome is one of the numbers {1, 2, 3, 4}"

Independent events

We already discussed how if we flip a coin twice, the probability of two heads is $\frac{1}{2} \times \frac{1}{2}$. This is because we consider the two tosses as independent. This means, the outcome of the first coin flip does not affect the outcome of the second flip.

Definition

Two events A and B are independent if

 $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$

We denote this as

 $A \perp\!\!\!\perp B$

A set of events $\{A_i : i \in I\}$ is independent if

$$\mathbb{P}(\bigcap_{i\in J}=\prod\mathbb{P}(A_i))$$

for every finite subset J of I.

Conditional Probability

One way to interpret the independence of events is as follows:

- Consider again the following two events:
 A : "The outcome is an even number"
 B : "The outcome is one of the numbers {1,2,3,4}"
- You want to bet on event A. How much are you willing to bet?
- ► I roll the die and tell you that event 2 has happened (hence, the outcome is one of {1, 2, 3, 4}.
- How much are you willing to bet now?
- We just described the conditional probability P(A = true|B = true)

Definition (Conditional Probability of A given B)

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

The probability of event A in the universe (sample space) where event B has already happened.

Definition (Conditional Probability of A given B)

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

The probability of event A in the universe (sample space) where event B has already happened.

Bayes Rule

$$P(A|B) = rac{P(B|A) * P(A)}{P(B)}$$

Let's prove it

Very often, people confuse P(A|B) and P(B|A). These can be VERY different.

Think about it:

You read in the paper: "Half of the people hospitalized with covid-19 are fully vaccinated". Do you think that getting the vaccine lowers your chances of getting hospitalized?

Why is Bayes Rule so important?

- Vacc: Yes if vaccinated, zero otherwise
- ▶ Hosp: Yes if hospitalized, zero otherwise.
- ▶ P(Hosp|Vacc) = 0.01
- $\blacktriangleright P(Hosp|\neg Vacc) = 0.2$
- Three different possibilities: P(Vacc) = 0.8, 0.5, 0.99
- Let's use Bayes rule to compute P(Vacc|Hosp) for all three cases.

Review(1)

- Probability is a way to quantify the probability with which an event occurs.
- For discrete sample spaces, it is pretty easy to define a probability measure over the set of all possible events.
- We can use the axioms of probability to prove several properties of probability.

Review(2)

- Two events are called independent when knowing the value of one doesn't influence the probability of the value of the other.
- The conditional probability of A given B denotes the probability of event A in a world where B has occured.
- Bayes rule connects P(A|B) and P(B|A). These two are confused but they are not the same.