Chapter 9: Hypothesis Testing

Sections

```
1
```

- 9.5 The *t* Test
- 9.6 Comparing the Means of Two Normal Distributions

The *t*-Test

- The *t*-Test is a test for hypotheses concerning the mean parameter in the normal distribution when the variance is also unknown.
- The test is based on the t distribution

The setup for the next few slides:

• Let X_1, \ldots, X_n be i.i.d. $N(\mu, \sigma^2)$ and consider the hypotheses

$$H_0: \mu \le \mu_0$$
 vs. $H_1: \mu > \mu_0$ (1)

The parameter space here is $-\infty < \mu < \infty$ and $\sigma^2 > 0$, i.e.

$$\Omega = (-\infty, \infty) \times (0, \infty)$$

And

$$\Omega_0 = (-\infty, \mu_0] \times (0, \infty)$$
 and $\Omega_1 = (\mu_0, \infty) \times (0, \infty)$

The one-sided *t*-Test

- The t test: a likelihood ratio test (see p. 583 585 in the book)
- Let

$$U = \frac{\sqrt{n}(\overline{X}_n - \mu_0)}{\sigma'}$$
 where $\sigma' = \left(\frac{1}{n-1}\sum_{i=1}^n (X_i - \overline{X}_n)^2\right)^{1/2}$

- If $\mu = \mu_0$ then *U* has the t_{n-1} distribution
- Tests based on *U* are called *t tests*

The one-sided *t*-Test

- Let T_m^{-1} be the quantile function of the t_m distribution
- The test δ that rejects H_0 in (1) if $U \geq T_{n-1}^{-1}(1 \alpha_0)$ has size α_0 (Theorem 9.5.1)
- To calculate the p-value:

Theorem 9.5.2: p-values for t Tests

Let *u* be the observed value of *U*.

The p-value for the hypothesis in (1) is $1 - T_{n-1}(u)$.

Example

Example: Acid Concentration in Cheese (Example 8.5.4)

- Have a random sample of n = 10 lactic acid measurements from cheese, assumed to be from a normal distribution with unknown mean and variance.
- Observed: $\overline{x}_n = 1.379$ and $\sigma' = 0.3277$
- Perform the level $\alpha_0 = 0.05$ *t*-test of the hypotheses

$$H_0: \mu \leq 1.2$$
 vs $H_1: \mu > 1.2$

Compute the p-value

The complete power function

- Need the power function to decide the sample size *n*
- The power function $\pi(\mu, \sigma^2 | \delta)$ is a non-central t_m distributions

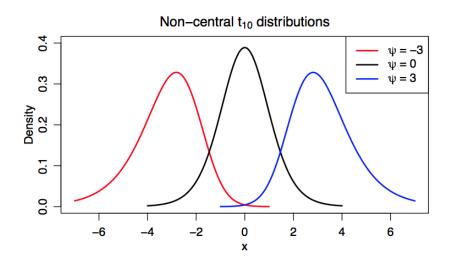
Def: Non-central t_m distributions

Let $W \sim N(\psi, 1)$ and $Y \sim \chi_m^2$ be independent. The distribution of

$$X = \frac{W}{(Y/m)^{1/2}}$$

is called the non-central t distribution with m degrees of freedom and non-centrality parameter ψ

Non-central *t_m* distribution



The complete power function

For the one-sided t-test

Theorem 9.5.3

U has the non-central t_{n-1} distribution with non-centrality parameter $\psi = \sqrt{n}(\mu - \mu_0)/\sigma$.

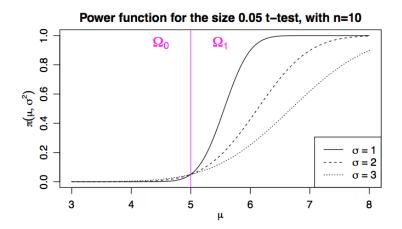
The power function of the t-test that rejects H_0 in (1) if

$$U \geq T_{n-1}^{-1}(1-\alpha_0) = c_1$$
 is

$$\pi(\mu, \sigma^2 | \delta) = 1 - T_{n-1}(c_1 | \psi)$$

Power function for the one-sided *t*-test

Example: n = 10, $\mu_0 = 5$, $\alpha_0 = 0.05$



Note that the power function is a function of both σ^2 and μ

The other one-sided *t*-Test

Now consider the hypothesis

$$H_0: \mu \ge \mu_0$$
 vs. $H_1: \mu < \mu_0$ (2)

• The test δ that rejects H_0 if $U \leq T_{n-1}^{-1}(\alpha_0)$ has size α_0 (Corollary 9.5.1)

Theorem 9.5.2: p-values for t Tests

Let u be the observed value of U. The p-value for the hypothesis in (2) is $T_{n-1}(u)$.

Theorem 9.5.3

U has the non-central t_{n-1} distribution with non-centrality parameter $\psi=\sqrt{n}(\mu-\mu_0)/\sigma$. The power function of the t-test that rejects H_0 in (2) if $U\leq T_{n-1}^{-1}(\alpha_0)=c_2$ is

$$\pi(\mu, \sigma^2 | \delta) = T_{n-1}(c_2 | \psi)$$

Two-sided *t*-test

Consider now the test with a two-sided alternative hypothesis:

$$H_0: \mu = \mu_0$$
 vs. $H_1: \mu \neq \mu_0$ (3)

- Size α_0 test δ : rejects H_0 iff $|U| \geq T_{n-1}^{-1}(1 \alpha_0/2) = c$
- If u is the observed value of U then the p-value is $2(1 T_{n-1}(|u|))$
- The power function is

$$\pi(\mu, \sigma^2 | \delta) = T_{n-1}(-c|\psi) + 1 - T_{n-1}(c|\psi)$$

Notes on one sample *t* tests

- Paired t tests are conducted in the same way
- For large n, the distribution of the test statistic under H₀ is close to the standard normal, i.e., the corresponding test is close to a Z test

The two-sample *t*-test

Comparing the means of two populations

- X_1, \ldots, X_m i.i.d. $N(\mu_1, \sigma^2)$ and Y_1, \ldots, Y_n i.i.d. $N(\mu_2, \sigma^2)$
- The variance is the same for both samples, but unknown

We are interested in testing one of these hypotheses:

- **1** $H_0: \mu_1 \leq \mu_2 \text{ vs. } H_1: \mu_1 > \mu_2$
- **1** $H_0: \mu_1 \geq \mu_2 \text{ vs. } H_1: \mu_1 < \mu_2$
- **1** $H_0: \mu_1 = \mu_2 \text{ vs. } H_1: \mu_1 \neq \mu_2$

Two-sample *t* statistic

Let
$$\overline{X}_{m} = \frac{1}{m} \sum_{i=1}^{m} X_{i}$$
 and $\overline{Y}_{n} = \frac{1}{n} \sum_{i=1}^{n} Y_{i}$

$$S_{X}^{2} = \sum_{i=1}^{m} (X_{i} - \overline{X}_{m})^{2} \text{ and } S_{Y}^{2} = \sum_{i=1}^{n} (Y_{i} - \overline{Y}_{n})^{2}$$

$$U = \frac{\sqrt{m+n-2} (\overline{X}_{m} - \overline{Y}_{n})}{\left(\frac{1}{m} + \frac{1}{n}\right)^{1/2} (S_{X}^{2} + S_{Y}^{2})^{1/2}}$$

- Theorem 9.6.1: If $\mu_1 = \mu_2$ then $U \sim t_{m+n-2}$
- Theorem 9.6.4: For any μ_1 and μ_2 , U has the non-central t_{m+n-2} distribution with non-centrality parameter

$$\psi = \frac{\mu_1 - \mu_2}{\sigma \left(1/m + 1/n \right)^{1/2}}$$

Two-sample *t* test – summary

Proofs similar to the regular t-test

- **a** $H_0: \mu_1 \leq \mu_2 \text{ vs. } H_1: \mu_1 > \mu_2$
 - Level α_0 test: Reject H_0 iff $U \geq T_{m+n-2}^{-1}(1-\alpha_0)$
 - p-value: $1 T_{m+n-2}(u)$
- **1** $H_0: \mu_1 \geq \mu_2 \text{ vs. } H_1: \mu_1 < \mu_2$
 - Level α_0 test: Reject H_0 iff $U \leq T_{m+n-2}^{-1}(\alpha_0)$
 - p-value: $T_{m+n-2}(u)$
- $lacktriangledown H_0: \mu_1 = \mu_2 \ ext{vs.} \ H_1: \mu_1
 eq \mu_2$
 - Level α_0 test: Reject H_0 iff $|U| \geq T_{m+n-2}^{-1}(1 \alpha_0/2)$
 - p-value: $2(1 T_{m+n-2}(|u|))$

- Power function is now a function of 3 parameters: $\pi(\mu_1, \mu_2, \sigma^2 | \delta)$
- The two-sample t-test is a likelihood ratio test (see p. 592)
- Important difference: Paired t test vs. two sample t test
- Two-sample t test with unequal variances
 - Proposed test-statistics do not have known distribution, but approximations have been obtained
 - Approach 1: The Welch statistic

$$V = \frac{\overline{X}_m - \overline{Y}_n}{\left(\frac{S_X^2}{m(m-1)} + \frac{S_Y^2}{n(n-1)}\right)^{1/2}}$$

can be approximated by a t distribution

• Approach 2: The distribution of the likelihood ratio statistic can be approximated by the χ^2_1 distribution if the sample size is large enough