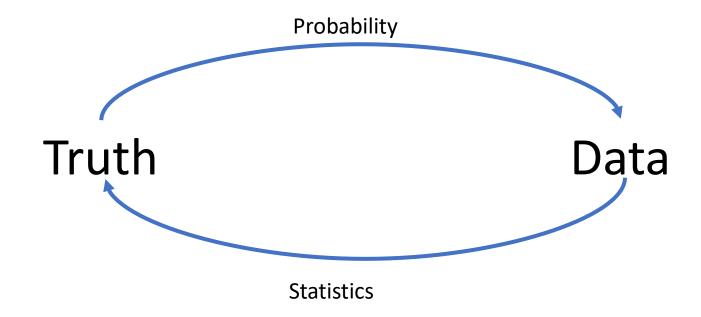
Lecture Summary

- Inference
- Bayesian vs Frequentist
- The Posterior
- Loss Function- Bayes Estimators
- Steps to Bayesian Inference
- Choices of priors
- Posterior predictive Credible intervals
 - Material in DeGroot and Schervish Chapter 7.1-7.4

What we did so far

- Probability
- Random Variables and their Distributions
- Expectation, Variance, Covariance
- Convergence of Random Variables

Statistical Inference



Types of Inference

- Estimation (prediction of a parameter)
- Hypothesis Testing
- Prediction

Useful concepts

Statistical Model:

- identification of random variables of interest (observable or only hypothetically observable).
- Specification of a family of possible distributions for the observable random variables.
- Identification of the parameters of this distributions.
- (Optional) Specification of a distribution for the unknown parameters.

Useful Concepts

Statistical Inference

• A procedure that produces a probabilistic statement about some or all parts of a statistical model.

Parameter

 A characteristic that determine the joint distribution for the random variables of interest.

Parameter space

• The set of all possible values of a (vector of) parameter(s) θ

Example

- Suppose that 40 patients are going to be given a treatment for a condition and we will observe for each patient whether or not they recover from the condition. Then we have:
- Observed r.vs. X_1 , ... X_{40}
- Hypothetically observed r.vs X_{41} , ... the remaining patients that will receive the drug (not in the trial)
- Statistical Model: X_i i. i. d, following a Bernoulli with parameter θ
- Estimation: Find θ

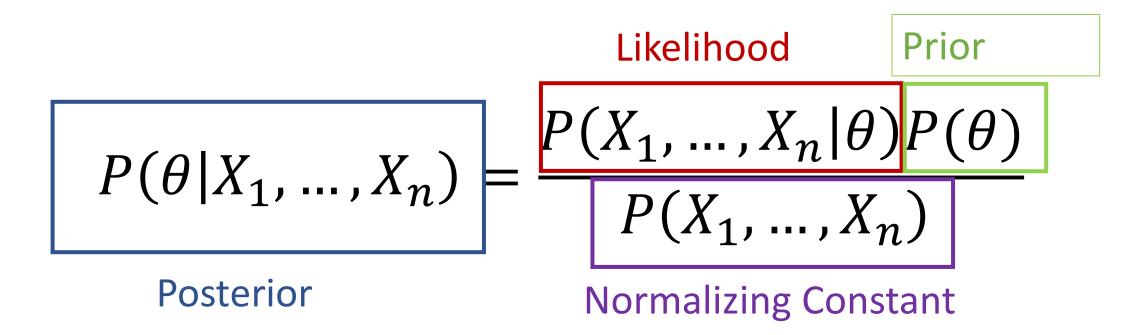
Two approaches to statistical inference

- Classical (Frequentist) Inference
- Bayesian Inference

• θ is a number unknown to us

- You can compute $P(X_1, ... X_{40} | \theta)$ for different possible $\theta's$
- Treat θ as a random variable (uncertainty)
- You can compute $P(\theta|X_1,...,X_{40})$ (distribution)

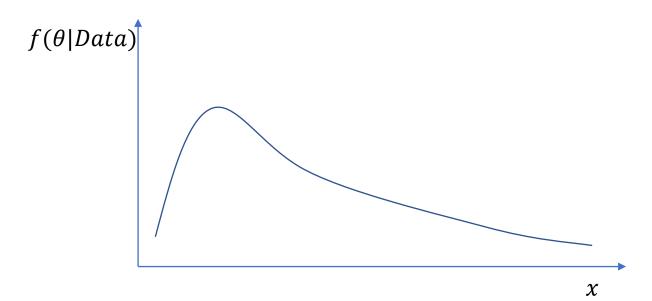
Bayesian Inference



Bayes Rule

Posterior

The posterior is a distribution



How to pick a single $\hat{\theta}$?

- Maximum a posteriori (MAP) estimator: Find the value that maximizes the posterior
- Other?

Loss Function

- $L(\theta, a)$: Quantifies how far your estimate a is from the true value θ .
- Examples of loss functions:
- Mean Squared Error: $(a \theta)^2$
- Mean Absolute Error: $|a \theta|$
- Zero-one loss: 0, if $a = \theta$, 1 otherwise.
- The loss is a random variable
- We are looking for the estimate α that minimizes $E(L(\theta, a)|Data)$
- Bayes estimator: Minimizes $E(L(\theta, a)|Data)$ for all possible Data.

How do we perform Bayesian Inference

- Pick a prior $P(\theta)$
- Compute the likelihood $P(X_1, ..., X_n | \theta)$
- Compute the normalization constant $P(X_1,...,X_n) = \int P(X_1,...,X_n|\theta)f(\theta)d\theta$ (Also known as the marginal likelihood)

Difficult, not always necessary

Example: Bernoulli Distribution with Uniform prior

- $X_1, ..., X_n$ follow a Bernoulli distribution
- We want to estimate $P(\theta|X_1,...,X_n)$

$$P(\theta|X_1,...,X_n) = \frac{P(X_1,...,X_n|\theta)P(\theta)}{P(X_1,...,X_n)}$$

- No prior information: All p in [0,1] are equally likely: $P(\theta) \sim Beta(1,1)$
- Posterior follows $Beta(1 + \sum X_i, 1 + n \sum X_i)$

Choice of Prior

• When the prior and the posterior follow the same family of distributions, the prior is called a conjugate prior.

 Sometimes it is convenient to pick a prior that does not have a proper distribution (e.g., "uniform" for the mean of a Normal). This is called an improper prior.

In the large sample limit, the effect of the prior vanishes.

Using the posterior

• Predicting the next observation (posterior predictive):

$$P(X_{n+1}|X_1,...,X_n) = \int P(X_n|\theta)f(\theta|X_1,...,X_n)d\theta$$

- Credible Interval -
- For $\alpha \in (0, 1)$, a Bayesian confidence region with level α , or an $100(1-\alpha)$ -credible interval is a random subset R of the parameter space, which depends on the sample X_1, \dots, X_n , such that:

$$P(\theta \in R|X_1, \dots, X_n) = 1 - \alpha$$