Lecture Summary

- ► The normal distribution
- The central limit theorem

Material can be found in Chapter 5.6, 6.3 of DeGroot and Schervish.

The Normal Distribution

Standard normal

$$\mathcal{N}(0,1): f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

.

Normal with mean μ and variance σ^2

$$\mathcal{N}(0,1): f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$$

_.

Theorem

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then $\alpha X + \beta \sim \mathcal{N}(\alpha \mu + \beta, \alpha^2 \sigma^2)$

Calculating probabilities with the Normal Distribution

- ▶ We want to estimate $P(X \le a)$ when $X \sim \mathcal{N}(\mu, \sigma^2)$
- ▶ No closed form for $\int_{-\infty}^{a} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^{2}\right) dt$
- ▶ If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $\frac{X-\mu}{\sigma} \sim \mathcal{N}(0, 1)$
- $P(X < a) = P(\frac{X-\mu}{\sigma} < \frac{a-\mu}{\sigma}) = \Phi(\frac{a-\mu}{\sigma}).$

Central Limit Theorem

Theorem (Central Limit Theorem)

If the random variables X_1, \ldots, X_n form a random sample of size n from a given distribution with mean μ and variance σ^2 (0 < σ^2 < ∞), then for each fixed number x

$$\lim_{n\to\infty} P(\sqrt{n}\frac{\bar{X}_n-\mu}{\sigma})=\Phi(x),$$

where Φ denotes the c.d.f. of the standard normal distribution.

Central Limit Theorem

- ► $S_n = \sum_{i=1}^n X_i$, mean $n\mu$, variance $n\sigma^2$.
- $ightharpoonup ar{X}_n = rac{S_n}{n}$, mean μ variance $rac{\sigma^2}{n}$.
- $ightharpoonup \frac{S_n}{\sqrt{n}}$, mean $\mu\sqrt{n}$, variance σ^2 .
- $ightharpoonup Zn = rac{S_n n\mu}{\sqrt{n}\sigma} = rac{\sqrt{n}(\bar{X_n} \mu)}{\sigma}$, mean 0, variance 1.

Example

- You are doing a poll on "ratio of people agree with the lockdown measures".
- ▶ True ratio: p, estimate \bar{X}_n
- ightharpoonup No guarantee for finding exactly p, so

$$P(|\bar{X}_n - p| \ge 0.01) \le 0.05$$

- Apply Chebysev inequality with t = 0.01: n = 50,000.
- Apply CLT: ?