UNIVERSITY OF CRETE
 DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS
 NUMBER THEORY - MEM204 (SPRING SEMESTER 2019-20) INSTRUCTOR: G. KAPETANAKIS

Final exam, September 2020 - Answers

Question 1. i. Show that $30 \mid n^{5}-n$, for every $n \in \mathbb{Z}$.
ii. Show that for every $m \in \mathbb{Z}_{>0}$,

$$
\left(2^{m}+3^{m}, 2^{m+1}+3^{m+1}\right)=1
$$

Answer. i. We have that $30=2 \cdot 3 \cdot 5$, that is, it suffices to show that 2,3 and 5 divide $n^{5}-n$. In particular, using Fermat's theorem, we have that for every n,

- $n^{5}-n \equiv n-n \equiv 0(\bmod 5)$,
- $n^{5}-n \equiv n^{3} \cdot n^{2}-n \equiv n \cdot n^{2}-n \equiv n^{3}-n \equiv n-n \equiv 0(\bmod 3)$ and
- $n^{5}-n \equiv 0(\bmod 2)$, in both cases $n \equiv 0(\bmod 2)$ and $n \equiv 1(\bmod 2)$.

The result follows.
ii. Assume that $\left(2^{m}+3^{m}, 2^{m+1}+3^{m+1}\right)>1$. If follows that there exists some prime p, such that $p \mid 2^{m}+3^{m}$ and $p \mid 2^{m+1}+3^{m+1}$. We take the second relation:

$$
p \mid 2^{m+1}+3^{m+1}=2 \cdot 2^{m}+3 \cdot 3^{m}=2 \cdot\left(2^{m}+3^{m}\right)+3^{m}
$$

Since $p \mid 2^{m}+3^{m}$, the latter yields $p\left|3^{m} \stackrel{p \text { prime }}{\Longrightarrow} p\right| 3$. Next, we have that

$$
p|3 \Rightarrow p| 3^{m} \stackrel{p \mid 2^{m}+3^{m}}{\Longrightarrow} p\left|2^{m} \stackrel{p \text { prime }}{\Longrightarrow} p\right| 2
$$

The facts $p \mid 2$ and $p \mid 3$ imply $p \mid 1$, a contradiction.
Question 2. i. Prove that

$$
\sum_{d \mid n} \mu(d) \tau(d)= \begin{cases}1, & \text { if } n=1 \\ (-1)^{k}, & \text { if } n=p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}\end{cases}
$$

ii. Find the residue of 2020^{2021} divided by 9 .

Answer. i. We present two different approaches/answers to this. For the second approach some further knowledge from combinatorics are required.
Number-theoretic approach: We know that both $\mu(x)$ and $\tau(x)$ are multiplicative, hence $\mu(x) \tau(x)$ is multiplicative. It follows that $\sum_{d \mid n} \mu(d) \tau(d)$ is multiplicative as a function of n. Similarly, $f(n):=\left\{\begin{array}{ll}1, & \text { if } n=1, \\ (-1)^{k}, & \text { if } n=p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}\end{array}\right.$ is clearly multiplicative. It follows that it suffices to prove the desired equality for the case $n=p^{r}$, where p is a prime and $r \geq 1$.
In this case we have that

$$
\sum_{d \mid p^{r}} \mu(d) \tau(d)=\sum_{i=0}^{r} \mu\left(p^{i}\right) \tau\left(p^{i}\right)=\mu(1) \tau(1)+\mu(p) \tau(p)=1-2=-1=f\left(p^{r}\right)
$$

since $\mu\left(p^{r}\right)=0$, for $r \geq 2, \mu(1)=\tau(1)=1, \mu(p)=-1$ and $\tau(p)=2$.
Cobinatorial approach: The case $n=1$ is trivial. Now, assume that $n \neq 1$, that is, $n=$ $p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}$. We have that a divisor of n is of the form $d=p_{i}^{d_{1}} \cdots p_{k}^{d_{k}}$, where $0 \leq d_{i} \leq n_{i}$ for all i. Observe that if $d_{i}>1$ for some i, then $\mu(d)=0$, thus, on the sum on the RHS of the equation of interest, only the square-free divisors contribute. It follows that

$$
\begin{aligned}
\sum_{d \mid n} \mu(d) \tau(d) & =\sum_{d \mid p_{1} \cdots p_{k}} \mu(d) \tau(d)=\sum_{i=0}^{k}\left(\sum_{1 \leq j_{1} \leq \ldots \leq j_{i} \leq k}\right) \mu\left(p_{j_{1}} \cdots p_{j_{i}}\right) \tau\left(p_{j_{1}} \cdots p_{j_{i}}\right) \\
& =\sum_{i=0}^{k}\binom{k}{i}(-1)^{i} 2^{i}=\sum_{i=0}^{k}\binom{k}{i}(-2)^{i} 1^{k-i}=(1-2)^{k}=(-1)^{k} .
\end{aligned}
$$

ii. We easily compute that $2020 \equiv 4(\bmod 9)$. Since $(4,9)=1$, Euler's theorem implies

$$
4^{\phi(9)}=4^{6} \equiv 1 \quad(\bmod 9)
$$

Using these facts, we compute

$$
2020^{2021} \equiv 4^{2021} \equiv 4^{6 \cdot 336+5} \equiv\left(4^{6}\right)^{336} \cdot 4^{5} \equiv 4^{5} \equiv 7 \quad(\bmod 9)
$$

Question 3. Solve

$$
4 x^{19}+10 x^{13}+7 x^{10}+3 x^{2}+1 \equiv 0 \quad(\bmod 15)
$$

Answer. Set $f(x)=4 x^{19}+10 x^{13}+7 x^{10}+3 x^{2}+1$. We have that $15=3 \cdot 5$, so we split the original question to the system

$$
\left\{\begin{array}{l}
f(x) \equiv 0 \quad(\bmod 3) \\
f(x) \equiv 0 \quad(\bmod 5)
\end{array}\right.
$$

Since 3 is prime, Fermat's theorem yields $x^{3} \equiv x(\bmod 3)$, for every $x \in \mathbb{Z}$. Thus, for every $x \in \mathbb{Z}$, we have that

$$
\begin{aligned}
f(x) & =4 x^{19}+10 x^{13}+7 x^{10}+3 x^{2}+1 \equiv x^{19}+x^{13}+x^{10}+1 \\
& \equiv\left(x^{3}\right)^{6} x+\left(x^{3}\right)^{4} x+\left(x^{3}\right)^{3} x+1 \equiv x^{7}+x^{5}+x^{4}+1 \\
& \equiv\left(x^{3}\right)^{2} x+x^{3} x^{2}+x^{3} x+1 \equiv x^{3}+x^{3}+x^{2}+1 \equiv x^{2}+2 x+1 \quad(\bmod 3)
\end{aligned}
$$

We easily verify (with tests) that the only solution of $x^{2}+2 x+1 \equiv 0(\bmod 3)$ is $x \equiv 2(\bmod 3)$.
We work similarly $(\bmod 5)$ and obtain:

$$
\begin{aligned}
f(x) & =4 x^{19}+10 x^{13}+7 x^{10}+3 x^{2}+1 \equiv 4 x^{19}+2 x^{10}+3 x^{2}+1 \\
& \equiv 4\left(x^{5}\right)^{3} x^{4}+2\left(x^{5}\right)^{2}+3 x^{2}+1 \equiv 4 x^{7}+2 x^{2}+3 x^{2}+1 \\
& \equiv 4 x^{5} x^{2}+1 \equiv 4 x^{3}+1 \quad(\bmod 5)
\end{aligned}
$$

We easily verify (with tests) that the only solution of $4 x^{3}+1 \equiv 0(\bmod 5)$ is $x \equiv 1(\bmod 5)$.
It follows that we have one solution $(\bmod 15)$ of $f(x) \equiv 0(\bmod 15)$, which is the solution of the system

$$
\left\{\begin{array}{l}
x \equiv 2 \quad(\bmod 3) \\
x \equiv 1 \quad(\bmod 5)
\end{array}\right.
$$

The Chinese Remainder Theorem ensures the existence of a unique solution of the above (mod 15). Let x be that solution. We have that

$$
x \equiv 2 \quad(\bmod 3) \Rightarrow x=3 \kappa+2
$$

for some κ. Also

$$
x \equiv 1 \quad(\bmod 5) \Rightarrow 3 \kappa+2 \equiv 1 \quad(\bmod 5) \Rightarrow \kappa \equiv 3 \quad(\bmod 5)
$$

that is, $\kappa=5 \lambda+3$. It follows that

$$
x=3(5 \lambda+3)+2=15 \lambda+11 \Rightarrow x \equiv 11 \quad(\bmod 15) .
$$

Question 4. Examine whether the equation

$$
23 x^{2}-17 y^{2}+5 z^{2}=0
$$

has non-trivial integer solutions.
Answer. We first observe that the requirements to apply Legendre's theorem directly are met, since 23,17 and 5 are distinct primes. It follows that the equation admits non-trivial solutions if and only if $23 \cdot 17$ is a quadratic residue $(\bmod 5),-23 \cdot 5$ is a quadratic residue $(\bmod 17)$ and $17 \cdot 5$ is a quadratic residue $(\bmod 23)$.

Since 23,17 and 5 are primes, the above is equivalent to

$$
\left(\frac{23 \cdot 17}{5}\right)=\left(\frac{-23 \cdot 5}{17}\right)=\left(\frac{17 \cdot 5}{23}\right)=1
$$

Using the known properties of the Legendre symbol, we easily verify that the above is true.

