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2nd exercise set - Answers

Exercise 1. Show that µ−1 = ν, where ν(n) = 1 for all n.

Answer. We know that ∑
d|n

µ(d) =

{
1, n = 0

0, n > 0.
(1)

Now, notice that µ(1) = 1, hence ∃µ−1. We will prove that µ−1(n) = 1 for all n, using
(strong) induction on n.

• For n = 1, µ−1(1) = 1
µ(1) = 1.

• Assume that µ−1(n) = 1 for all n < k, where k ≥ 2 (I.H.).

• Let k = pk11 · · · pkrr be the prime factorization of k. We have that

µ−1(k) =−
∑
d|k
d̸=k

µ

(
k

d

)
µ−1(d)

I.H.
= −

∑
d|k
d̸=k

µ

(
k

d

)

= −
∑
d|k
d̸=1

µ(d) = 1−
∑
d|k

µ(d)
(1)
= 1.

Exercise 2. Show that for every n ≥ 1, µ(n)µ(n+ 1)µ(n+ 2)µ(n+ 3) = 0.

Answer. The result follows immediately as a combination of the following facts:

1. Let 0 ≤ r ≤ 3 be the remainder of the euclidean division of n + 3 by 4. Then
4 | n+ 3− r and n+ 3− r = n, n+ 1, n+ 2 or n+ 3.

2. If 4 | k, then k is not square-free, i.e., µ(k) = 0.

Exercise 3. Let p be a prime. Show that

∑
d|n

µ(d)µ(gcd(p, d)) =


1, if n = 1,

2, if n = pa, a ≥ 1,

0, otherwise.

Answer. We consider the following cases:

1. If n = 1, then, clearly,
∑

d|n µ(d)µ(gcd(p, d)) = 1.
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2. If n > 1 and p ∤ n, then ∀ d | n, we have that gcd(p, d) = 1 ⇒ µ(gcd(p, d)) = 1. It
follows that ∑

d|n

µ(d)µ(gcd(p, d)) =
∑
d|n

µ(d)
(1)
= 0.

3. If n > 1, p | n and n ̸= pa. Then we write n = pbm, where m > 1, b ≥ 1 and
(m, p) = 1. It follows that∑

d|n

µ(d)µ(gcd(p, d)) =
∑
d|n
p∤d

µ(d)µ(gcd(p, d)) +
∑
d|n
p|d

µ(d)µ(gcd(p, d))

=
∑
d|m

µ(d) + µ(p)2
∑
d|m

µ(d)
(1)
= 0.

4. If n = pa, a ≥ 1, then

∑
d|n

µ(d)µ(gcd(p, d)) =
a∑

i=0

µ(pi)µ(gcd(p, pi))

= µ(1)2 + µ(p)2 +
a∑

i=2

µ(pi)µ(p)

(1)
= 12 + (−1)2 + 0 = 2.

Exercise 4. Show that for every n > 2, ϕ(n) is even.

Answer. We take two cases:

1. If n = 2a, where a ≥ 2. Then ϕ(n) = 2a−1, where a− 1 ≥ 1, so ϕ(n) is even.

2. If n is divided by an odd prime p, then we easily see that p − 1 | ϕ(n). Thus, since
p− 1 is even, so is ϕ(n).

Exercise 5. How many numbers 1 ≤ k ≤ 3600 have a non-trivial common factor with
3600?

Answer. First, notice that 3600 = 243252. Also, in total, we have 3600 numbers in the
interval 1 ≤ k ≤ 3600. Among them, there are

ϕ(3600) = 24−132−152−1(2− 1)(3− 1)(5− 1) = 23 · 3 · 5 · 1 · 2 · 4 = 960

numbers that are co-prime to 3600. It follows that the remaining 3600 − 960 = 2640
numbers in the interval have a non-trivial common factor with 3600.

Exercise 6. Show that m | n ⇒ ϕ(m) | ϕ(n).
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Answer. Since m | n, we can assume that if

m = pm1
1 · · · pmk

k ,

where mi ≥ 1, is the prime factorization of m, then the prime factorization of n is of the
form

n = pn1
1 · · · pnk

k p
nk+1

k+1 · · · pnℓ
ℓ ,

where ni ≥ mi, for 1 ≤ i ≤ k and ni ≥ 1, for k + 1 ≤ i ≤ ℓ.
It follows that

ϕ(m) = pm1−1
1 · · · pmk−1

k (p1 − 1) · · · (pk − 1)

and

ϕ(n) = pn1−1
1 · · · pnk−1

k (p1 − 1) · · · (pk − 1)p
nk+1−1
k+1 · · · pnℓ−1

ℓ (pk+1 − 1) · · · (pℓ − 1).

The result follows immediately from the fact that ni ≥ mi, for 1 ≤ i ≤ k.

Exercise 7. Show that ifm and n have the same prime factors (possibly in different powers),
then nϕ(m) = mϕ(n).

Answer. Letm = pm1
1 · · · pmk

k andn = pn1
1 · · · pnk

k , whereni,mi ≥ 1 be the prime factoriza-
tions of m and n. Then

nϕ(m) = pn1
1 · · · pnk

k pm1−1
1 · · · pmk−1

k (p1 − 1) · · · (pk − 1)

= pm1
1 · · · pmk

k pn1−1
1 · · · pnk−1

k (p1 − 1) · · · (pk − 1)

= mϕ(n).

Exercise 8. Find all n such that ϕ(n) = n
2 .

Answer. Let n = pn1
1 · · · pnk

k , where ni ≥ 1 be the prime factorization of n. Then ϕ(n) =
n/2 implies

pn1−1
1 · · · pnk−1

k (p1 − 1) · · · (pk − 1) =
pn1
1 · · · pnk

k

2
,

that is,
2(p1 − 1) · · · (pk − 1) = p1 · · · pk.

TheRHS of the above equation is square-free, so the same should hold for the RHS. However,
this is only possible if (p1 − 1) · · · (pk − 1) = 1, i.e., if n = 2a, a ≥ 1. Moreover, we easily
verify that ϕ(2a) = 2a−1 = 2a

2 . To sum up, ϕ(n) = n
2 if and only if n = 2a for some

a ≥ 1.

Exercise 9. Find all n such that ϕ(n) = 12.

Answer. Write n = pn1
1 · · · pnk

k , where pi ̸= pj and ni ≥ 1. Then

ϕ(n) =
(
pn1−1
1 (p1 − 1)

)
· · ·

(
pnk−1
k (pk − 1)

)
.
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It follows that ϕ(n) = 12 implies that for every i, we have that ϕ(pni
i ) = pni−1

i (pi−1) | 12.
This suggests that it suffices to cycle through the divisors d of 12 and try to find all the
possible pairs (pi, ni), such that ϕ(pni

i ) = d and then see which of those pairs can be
combined with each other, in order to get the required product 12. Note that two pairs with
the same prime cannot co-exist.

The divisors of 12 are: {1, 2, 3, 4, 6, 12}. We examine each divisor separately:

d = 1. Here, we have the pair (pi, ni) = (2, 1) (that is, ϕ(2) = 1).

d = 2. Here, we have the pairs (pi, ni) = (2, 2) and (3, 1) (that is, ϕ(4) = ϕ(3) = 2).

d = 3. This is impossible by Exercise 4.

d = 4. Here, we have the pairs (pi, ni) = (2, 3) and (5, 1).

d = 6. Here, we have the pairs (pi, ni) = (3, 2) and (7, 1).

d = 12. Here, we have the pair (13, 1).

We have the following possibilities, corresponding to the largest divisor appearing.

1. If the largest divisor is d = 12, then (13, 1) appears and it may appear on its own, or
along with the pair (2, 1). We get two corresponding numbers, n = 13 and n = 26.

2. If the largest divisor is d = 6, then d = 2 should appear and d = 1 may appear. It
follows that we may have 8 options (2 choices for d = 6, 2 choices for d = 2 and 2
choices for adding d = 1 or not. In total 2 · 2 · 2 = 8 options). In particular, we have

(a) {(3, 2), (2, 2), (2, 1)}
(b) {(3, 2), (2, 2)}
(c) {(3, 2), (3, 1), (2, 1)}
(d) {(3, 2), (3, 1)}
(e) {(7, 1), (2, 2), (2, 1)}
(f) {(7, 1), (2, 2)}
(g) {(7, 1), (3, 1), (2, 1)}
(h) {(7, 1), (3, 1)}

Since two coexisting pairs cannot share the same first coordinate, we exclude the op-
tions {(3, 2), (2, 2), (2, 1)}, {(3, 2), (3, 1), (2, 1)}, {(3, 2), (3, 1)} and {(7, 1), (2, 2), (2, 1)},
so we are left with 4 options. They correspond to the numbers: 36, 28, 42 and 21.

3. If the largest divisor is d = 4, then d = 3 should appear, but this is impossible.

4. The largest divisor cannot be d = 3, as d = 3 is impossible.

5. Finally, clearly, the largest divisor cannot be 2 or 1.

All in all, there are six choices for n, that is, 13, 26, 36, 28, 42 and 21.
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Exercise 10. Find all n such that σ(n) = 12.

Answer. It is clear that σ(n) ≥ n + 1 ⇐⇒ n ≤ σ(n) − 1. It follows that it suffices to
check the numbers n ≤ 11. A quick computation reveals:

1. σ(1) = 1.
2. σ(2) = 3.
3. σ(3) = 4.
4. σ(4) = 7.
5. σ(5) = 6.
6. σ(6) = 12.
7. σ(7) = 8.
8. σ(8) = 15.
9. σ(9) = 13.

10. σ(10) = 17.
11. σ(11) = 12.

So, n = 6 or n = 11.

Exercise 11. Find all n such that τ(n) = 12.

Answer. Write n = pn1
1 · · · pnk

k , where pi ̸= pj and ni ≥ 1. Then, we have that

τ(n) = (n1 + 1) · · · (nk + 1).

W.l.o.g. assume that the numbers (n1+1), . . . , (nk+1) are in descending order. Then each
of them is a divisor > 1 of 12. Then we have the following options:

1. n1 = 11.
2. n1 = 5, n2 = 1.
3. n1 = 3, n2 = 2.
4. n1 = 2, n2 = 1, n3 = 1.

It follows that τ(n) = 12 iff n is factorized into primes in one of the following ways

1. n = p111 ,
2. n = p51p2,
3. n = p31p

2
2 or

4. n = p21p2p3,

where the numbers p1, p2 and p3 are distinct primes.

Exercise 12. Define σk(n) =
∑

d|n d
k. Show that σk is multiplicative.

Answer. It is obvious that f(n) = nk is multiplicative. The desired result follows.

Exercise 13. Prove the following identities:

1.
∑

d|n
1
d = σ(n)

n .

2.
∑

d|n σ(d) = n
∑

d|n
τ(d)
d .
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3. n ·
∑

d|n
σ(d)
d =

∑
d|n d · τ(d).

Answer. We begin with the first item. Note that f(n) = 1
n is multiplicative, hence

∑
d|n

1
d

is multiplicative. Moreover, σ(n) is multiplicative, so, σ(n)f(n) = σ(n)
n is multiplicative. It

follows that it suffices to show that ∑
d|n

1

d
=

σ(n)

n
,

for n = pa, where p is a prime and a ≥ 1. Now, we have that

∑
d|pa

1

d
=

a∑
i=0

1

pi
=

1

pa

a∑
i=0

pa−i =
1

pa

a∑
i=0

pi =
σ(pa)

pa
.

Next, we focus on the second item. Using similar arguments as before, one can see that∑
d|n σ(d) and n

∑
d|n

τ(d)
d are both multiplicative. It follows that it suffices to show the

equality when n = pa. We have that

∑
d|pa

σ(d) =
a∑

i=0

σ(pi) =
a∑

i=0

i∑
j=0

pj =
a∑

i=0

(a− i+ 1)pi,

and

pa
∑
d|pa

τ(d)

d
= pa

a∑
i=0

τ(pi)

pi
=

a∑
i=0

(i+ 1)pa−i.

The result follows.
Finally, we focus on the third item. Using similar arguments as before, one can see that

the two functions are multiplicative. It follows that it suffices to show the equality when
n = pa. We have that

pa
∑
d|pa

σ(d)

d
= pa

a∑
i=0

σ(pi)

pi
=

a∑
i=0

i∑
j=0

pa−i+j =
a∑

i=0

(i+ 1)pi,

and ∑
d|pa

dτ(d) =

a∑
i=0

piτ(pi) =

a∑
i=0

(i+ 1)pi.

The result follows.

Exercise 14. If n is a perfect number, show that
∑

d|n
1
d = 2.

Answer. If n is perfect, then

σ(n) = 2n ⇒
∑
d|n

d = 2n ⇒
∑
d|n

n

d
= 2n ⇒ n

∑
d|n

1

d

 = 2n ⇒
∑
d|n

1

d
= 2.
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