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Exercise 1. Without using induction, show that for every n, 2 | n(n + 1) and that 6 |
n(n+ 1)(n+ 2).

Answer. We have the following cases:

• If n is even, then 2 | n ⇒ 2 | n(n+ 1).
• If n is odd, then 2 | n+ 1 ⇒ 2 | n(n+ 1).

So, for every n ∈ Z, 2 | n(n+ 1).
The above also implies that 2 | n(n+1)(n+2), for every n ∈ Z. Now, take the following

cases:

• If n is of the form n = 3k, then 3 | n ⇒ 3 | n(n+ 1)(n+ 2).
• If n is of the form n = 3k + 1, then 3 | n+ 2 ⇒ 3 | n(n+ 1)(n+ 2).
• If n is of the form n = 3k + 2, then 3 | n+ 1 ⇒ 3 | n(n+ 1)(n+ 2).

So, for every n ∈ Z, 3 | n(n + 1)(n + 2). The latter combined with the fact that 2 |
n(n+ 1)(n+ 2) yields that, for every n ∈ Z, 6 | n(n+ 1)(n+ 2).

Exercise 2. Show that for every n ∈ Z≥0, 7 | 32n+1 + 2n+2.

Answer. We will use induction on n.

• The result is clear when n = 0.
• Assume that 7 | 32k+1 + 2k+2, for some k ≥ 0. This implies

32k+1 = 7ℓ− 22k+2, (1)

for some ℓ ∈ Z.
• Then:

32(k+1)+1 + 2(k+1)+2 = 9 · 32k+1 + 2 · 22k+2

(1)
= 9(7ℓ− 22k+2) + 2 · 22k+2

= 7(9ℓ− 22k+2).

Exercise 3. Show that for every n ∈ Z≥1, 15 | 24n − 1.

Answer. We have that

24n − 1 = (24)n − 1 = (24 − 1)((24)n−1 + (24)n−2 + · · ·+ 1) = 15(24n−4 + · · ·+ 1).

The result follows.
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Exercise 4. Show that for every λ, a1, . . . , an ∈ Z,

1. [λa1, . . . , λan] = |λ|[a1, . . . , an] and
2. if [a1, . . . , an] = m, then

(
m
a1
, . . . , m

an

)
= 1.

Answer. 1. W.l.o.g. assume thatλ > 0. Now, set e := [a1, . . . , an] andm := [λa1, . . . , λan].
We have that ∀i, ai | e ⇒ ∀i, λai | λe ⇒ m | λe. Conversely, ∀i, λai | m ⇒ ∀i,
ai | m

λ ⇒ e | m
λ ⇒ λe | m. We conclude that λe = m.

2. Set d :=
(

m
a1
, . . . , m

an

)
. We have that, ∀i, d | m

ai
⇒ ∀i, dai | m ⇒ [da1, . . . , dan] |

m. However, from the previous item, [da1, . . . , dan] = dm, so the above relation
becomes dm | m ⇒ d | 1 ⇒ d = 1.

Exercise 5. Find all the integers a ̸= 3 such that a− 3 | a3 − 3.

Answer. Let p be a prime divisor of a− 3. We have that

p | a− 3
a−3|a3−3=⇒ p | a3 − 3

p|a−3=⇒ p | a3 − a = a(a− 1)(a+ 1)
p∈P=⇒ p | a or p | a± 1.

We take the following cases:

• p | a p|a−3=⇒ p | 3 p∈P=⇒ p = 3.
• p | a± 1

p|a−3=⇒ p | 2 or 4 p∈P=⇒ p = 2.

In other words, the only primes that may divide a− 3 are 2 and 3, i.e.,

a− 3 = ±2κ3λ ⇐⇒ a = 3± 2κ3λ, (2)

for some κ, λ ≥ 0. It follows that

a3 − 3 = 33 ± 3 · 322κ3λ + 3 · 3 · 22κ32λ ± 23κ33λ − 3

= 24± 2κ3λ+3 + 22κ32λ+2 ± 23κ33λ.

It is clear that 2κ3λ divides the LHS of the above, as well as the last three terms of the RHS,
so it also divides the first term. In other words,

2κ3λ | 24 = 233.

It follows that 0 ≤ κ ≤ 3 and 0 ≤ λ ≤ 1. In accordance with (2), we conclude that

a = 3± 2κ3λ,

where 0 ≤ κ ≤ 3 and 0 ≤ λ ≤ 1 (16 numbers in total).

Exercise 6. Find all the integers a such that both 624 and 301 leave a remainder of 16when
divided by a.
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Answer. We have that

a | 624− 16 = 608
a | 301− 16 = 285

}
⇒ a | (608, 285) = 19 ⇒ a = 1 or 19.

Since a division with 1 always leaves remainder 0, we conclude that a = 19.

Exercise 7. If n > 1, show that n4 + 4 is composite.

Answer. We have that

n4 + 4 = n4 + 4n2 + 4− 4n2 = (n2 + 2)2 − (2n)2 = (n2 − 2n+ 2)(n2 + 2n+ 2).

Sincen > 1, both of the factors above are non-trivial, thuswe have a non-trivial factorization
of n4 + 4.

Exercise 8. Without using Dirichlet’s theorem, show that there are infinitely many primes
of the forms 4k + 3 and 6ℓ+ 5.

Answer. Assume that there is only a finite number of such primes. Let

3, p1, . . . , pn

be these primes (i.e. p1 = 7). Now, take the number

A := 4p1 · · · pn + 3.

Clearly A is of the form 4k + 3. However, A ̸= 3 and A > pi for all i, that is A is not a
prime. Now, since A is even, 2 does not appear in the prime factorization of A. Also, 3 ∤ A,
since that would imply 3 | 4p1 · · · pn, a contradiction. Moreover, it is easy to check that the
product of two numbers of the form 4k+1 is another number of the form 4k+1. It follows
that A has at least one prime factor of the form 4k + 3, i.e., pi | A for some i.

Now, we have:

pi | A = 4p1 · · · pn + 3
pi|4p1···pn=⇒ pi | 3

pi∈P=⇒ pi = 3,

a contradiction.
The question regarding 6ℓ+ 5 is similar.

Exercise 9. Find all a, b ∈ Z>0, such that ab = 480 and [a, b] = 240.

Answer. We have that 480 = 25 · 3 · 5 and 240 = 24 · 3 · 5. It follows that

a = 2a23a35a5 and b = 2b23b35b5 ,

where ai, bi ≥ 0, such that

a2 + b2 = 5 , max(a2, b2) = 4,

a3 + b3 = 1 , max(a3, b3) = 1,

a5 + b5 = 1 , max(a5, b5) = 1.

It follows that {a2, b2} = {1, 4}, {a3, b3} = {0, 1} and {a5, b5} = {0, 1}. We conclude that
we have 8 choices for the pair a, b.
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Exercise 10. Let a = am · · · a0 be the decimal expression a, i.e., a =
∑m

i=0 10
iai. Show

that:
(a) 2 | a ⇐⇒ 2 | a0. (b) 3 | a ⇐⇒ 3 |

∑n
i=0 ai.

(c) 4 | a ⇐⇒ 4 | 10a1 + a0. (d) 5 | a ⇐⇒ 5 | a0.
(e) 7 | a ⇐⇒ 7 | 2a0 − a−a0

10 . (f) 9 | a ⇐⇒ 9 |
∑n

i=0 ai.
(g) 11 | a ⇐⇒ 11 |

∑n
i=0(−1)iai. (h) 25 | a ⇐⇒ 25 | 10a1 + a0.

Answer. (a) We have that a =
∑m

i=0 10
iai = a0 + 2 · 5 ·

∑n
i=1 ai10

i−1. It follows that
2 | a ⇐⇒ 2 | a0. Item (d) is similar.

(b) First, we will inductively prove that 10i = 3ki + 1, for some ki. The result is trivial
for i = 0. Assume that 10j = 3kj + 1. Then 10j+1 = 10 · 10j = 10(3kj + 1) =
3(10kj + 3) + 1. This assures our claim. Now, we have that

a =

m∑
i=0

10iai =

m∑
i=0

(3ki + 1)ai = 3

(
n∑

i=0

kiai

)
+

n∑
i=0

ai.

The latter implies 3 | a ⇐⇒ 3 |
∑n

i=0 ai. Item (f) is similar.

(c) We have that a =
∑m

i=0 10
iai = a0 + 10a1 + 4 · 25 ·

∑n
i=2 ai10

i−2. It follows that
4 | a ⇐⇒ 4 | a0 + 10a1. Item (h) is similar.

(e) First notice that a−a0 = 10
(∑n

i=1 ai10
i−1
)
, that is, a−a0

10 is an integer, i.e., 2a0− a−a0
10

is an integer. Furthermore, note that

2a0 −
a− a0
10

=
21a0 − a

10
.

It follows that

7 | 2a0 −
a− a0
10

⇐⇒ 7 | 21a0 − a

10

(7,10)=1⇐⇒ 7 | 21a0 − a
7|21⇐⇒ 7 | a.

(g) First, we will inductively prove that 10i = 11ℓi + (−1)i, for some ℓi. The result
is trivial for i = 0. Assume that 10j = 11ℓj + (−1)j . Then 10j+1 = 10 · 10j =
(11− 1)(11ℓj + (−1)j) = 11(11ℓj + (−1)j − ℓj) + (−1)j+1. This assures our claim.
Now, we have that

a =
m∑
i=0

10iai =
m∑
i=0

(11ℓi + (−1)i)ai = 11

(
n∑

i=0

ℓiai

)
+

n∑
i=0

(−1)iai.

The latter implies 11 | a ⇐⇒ 11 |
∑n

i=0(−1)iai.

Exercise 11. Find all x ∈ Q, such that A = 3x2 − 5x ∈ Z.

Answer. Clearly, if x ∈ Z, then A ∈ Z. Now, assume that x ̸∈ Z. Then w.l.o.g., we may
assume that x = a

b , where (a, b) = 1 and b > 1. Now, we get that A = a(3a−5b)
b2

∈ Z. It
follows that

b2 | a(3a− 5b) ⇒ b | a(3a− 5b)
(a,b)=1⇒ b | 3a− 5b

b|5b⇒ b | 3a (a,b)=1⇒ b | 3 b>1⇒ b = 3.
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It remains to check for which values of a, with (a, 3) = 1, x = a
3 , yieldsA ∈ Z. In particular,

we have A = 3x2 − 5x = a(a−5)
3 , that is (since (a, 3) = 1, a must satisfy 3 | a − 5, that is

a = 3k + 2 for some k.
All in all, A ∈ Z ⇐⇒ x ∈ Z or x = k + 2

3 , for some k ∈ Z.

Exercise 12. Show that if 2n − 1 is a prime, then n is a prime.

Answer. Suppose that n is not a prime, that is, n = st, for some s, t > 1. Then 2n − 1 =
2st − 1 = (2s − 1)((2s)t−1 + · · ·+ 1), where both factors are > 1, a contradiction.

Exercise 13. The Fibonacci sequence 1, 1, 2, 3, . . . is defined recursively as an+1 = an+an−1,
for n ≥ 2, and a1 = a2 = 1. Show that (an, an+1) = 1 for every n ≥ 1

Answer. First, we prove that for any a, b, we have that

(a+ b, a) = (a, b). (3)

Set d1 = (a + b, a) and d2 = (a, b). Now, note that d1 | a + b
d1|a⇒ d1 | b d1|a⇒ d1 | d2.

Additionally, we have that d2 | b d2|a⇒ d2 | a + b
d2|a⇒ d2 | d1. It follows that d1 = d2 this

concludes the proof of our claim.
Now, we will prove that (an, an+1) = 1, using induction on n.

• The result is trivial for n = 1 and n = 2.
• Assume that (ak, ak+1) = 1 for some k ≥ 2 (I.H.).
• We have that (ak+1, ak+2) = (ak+1, ak + ak+1)

(3)
= (ak+1, ak)

I.H.
= 1.

Exercise 14. Suppose that a, b > 1 and (a, b) = 1. Then:

1. There exists some x, y > 0 such that ax− by = 1.
2. If xa = yb, then x = nb and y = na for some n.
3. For every n > ab, there exist some x, y > 0 such that n = ax+ by.
4. There are no x, y > 0 such that ab = ax+ by.

Answer. 1. Since (a, b) = 1, there exist some x′, y′, such that ax′+by′ = 1. Next, notice
that x′, y′ ̸= 0, since that would imply a | 1 or b | 1. Moreover, notice that, since
a, b > 1, exactly one of x′, y′ is positive and the other is negative. If x′ > 0 and
y′ < 0 the result is immediate, so we only need to focus on the case x′ < 0 and
y′ > 0.
So, assume that x′ < 0 and y′ > 0 and for any n > 0, set xn = x′ + bn and
yn = y′ − an. For every n ∈ Z, we have that

axn + byn = a(x′ + bn) + b(y′ − an) = ax′ + by′ = 1.

Also, note that limn→∞ xn = ∞ and limn→∞ yn = −∞, that is, there exists some
m, such that x := xm > 0 and y := ym < 0. The desired result follows.
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2. From item 1, there exist some k, ℓ > 0, such that

ak − bℓ = 1. (4)

We have that

xa = yb ⇒ xaℓ = ybℓ
(4)⇒ xaℓ = yak−1 ⇒ y1/a =

yk

xℓ
∈ Q.

However, we know¹ that a rational power of an integer is either an integer or an
irrational number. This means that y1/a = n, for some n ∈ Z. It follows that y = na.
Also, we have that

xa = yb ⇒ xa = nab ⇒ x = nb.

3. Fix some n > ab. Set
S := {n− ib : 1 ≤ i ≤ a}.

We claim that any two distinct elements of S, leave a different remainder, when
divided by a. In order to prove that, assume that there exist some 1 ≤ i < j ≤ a, such
that n− ib = kia+r and n−jb = kja+r. It follows that a | b(j− i)

(a,b)=1⇒ a | j− i,
impossible, since 0 < j − i < a. Our claim is now proven.
The above combined with the fact that |S| = a, yields that the set S includes elements
that leave every possible remainder when divided by a, including one that leaves
remainder zero, i.e., is divided by a. In other words, there exists some k, such that
k = n− yb, for some 1 ≤ y ≤ a and k = ax, for some x ≤ 1. The result follows.

4. Let x, y > 0 be such that
ab = ax+ by. (5)

We have that a | ab and a | ax, so (5) implies that a | by (a,b)=1=⇒ a | y ⇒ y = ay′. In a
similar way, one obtains x = bx′. Now, (5) becomes

ab = ab(x′ + y′),

which is impossible.

Exercise 15. If a > 1, then (am − 1, an − 1) = a(m,n) − 1.

Answer. If m = n the result is clear, so we focus on the case m ̸= n and w.l.o.g. we may
further assume thatm > n.

Now, if m = qn+ r is the Euclidean division of m and n, we have that

am − 1 = aqn+r − 1

= ar(aqn − 1) + (ar − 1)

= ar(aq−1 + aq−2 + · · ·+ 1)︸ ︷︷ ︸
A

(an − 1) + (ar − 1)

= A(an − 1) + (ar − 1),

¹If you don’t know that, prove it!
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where in the last equation, we note that clearly, 0 ≤ ar−1 < an−1. In other words ar −1
is the remainder of the Euclidean division between am− 1 and an− 1. This implies that the
Euclidean division between am − 1 and an − 1 is dictated by the corresponding Euclidean
division betweenm and n. It follows that the Euclidean algorithmwill follow the same steps
in both cases and that the last non-trivial remainder (i.e. the gcd) of the Euclidean algorithm
for am − 1 and an − 1 will be a(m,n) − 1.
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