UNIVERSITY OF CRETE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS
NUMBER THEORY - MEM204 (SPRING SEMESTER 2019-20)
LECTURER: G. KAPETANAKIS
6th exercise set - Answers
Exercise 1. Show that if a is primitive modulo n, then a^{k} is primitive modulo n if and only if $(\phi(n), k)=1$. Moreover, if \mathbb{Z}_{n} contains one primitive root, it contains a total of $\phi(\phi(n))$ primitive roots, given by the above rule.
Answer. We have that a is primitive, i.e., $\operatorname{ord}(a)=\left|\mathbb{Z}_{n}^{*}\right|=\phi(n)$. Further, a^{k} is primitive if and only if

$$
\operatorname{ord}\left(a^{k}\right)=\phi(n) \Longleftrightarrow \frac{\operatorname{ord}(a)}{\operatorname{gcd}(k, \operatorname{ord}(a))}=\phi(n) \stackrel{\operatorname{ord}(a)=\phi(n)}{\Longleftrightarrow} \operatorname{gcd}(k, \phi(n))=1 .
$$

Next, notice that

$$
\langle a\rangle=\left\{a^{k} \mid k \in \mathbb{Z}\right\}=\left\{a^{k} \mid 1 \leq k \leq \phi(n)\right\}=\mathbb{Z}_{n}^{*}
$$

Combining the above, yields that identifying the primitive elements of \mathbb{Z}_{n}^{*}, is equivalent to identifying the exponents $1 \leq k \leq \phi(n)$ that are co-prime to $\phi(n)$. By the definition of the ϕ-function, the number of these exponents is $\phi(\phi(n))$.

Exercise 2. Find all the primitive roots modulo 54 and modulo 55.
Answer. We begin with 55 . Since $55=5 \cdot 11$, we conclude is not of the forms 2 , $4, p^{r}$ or $2 p^{r}$, thus there are no primitive roots modulo 55 .

Next, notice that $54=2 \cdot 3^{3}$, hence there are primitive roots modulo 54. First, we will find a special primitive root modulo 54 and then, based on this, using Exercise 1, build the whole set of primitive roots modulo 54.

The possible orders of the elements of \mathbb{Z}_{54}^{*} are the divisors of $\phi(54)=18$, hence $1,2,3,6,9$ and 18 . We explicitly check the elements one-by-one, until we find one whose order is not $1,2,3,6$ or 9 :

$$
\begin{aligned}
& 1^{1} \equiv 1(\bmod 54) \Rightarrow \operatorname{ord}(\overline{1})=1 \\
& 5^{1} \equiv 5(\bmod 54), 5^{2} \equiv 25 \quad(\bmod 54), 5^{3} \equiv 17 \quad(\bmod 54) \\
& 5^{6} \equiv 19 \quad(\bmod 54), 5^{9} \equiv 53 \quad(\bmod 54) \Rightarrow \operatorname{ord}(\overline{5})=18
\end{aligned}
$$

It follows that 5 is a primitive root modulo 54 .
By Exercise 1, there are exactly

$$
\phi(\phi(54))=\phi(18)=6
$$

such roots. More precisely, the numbers in the interval $1 \leq k \leq \phi(54)=18$, that are co-prime to 18 are

$$
1,5,7,11,13,17
$$

hence, the distinct primitive roots modulo 54 are the numbers

$$
5,5^{5}, 5^{7}, 5^{11}, 5^{13}, 5^{17}
$$

Exercise 3. Prove that if one knows n and $\phi(n)$ and knows that $n=p q$ for some distinct primes p and q, then he/she can compute p and q without performing any hard computation, such as the factorization of n.
Answer. We have that

$$
\phi(n)=(p-1)(q-1)=n-p-q+1 \Rightarrow p+q=A=n-\phi(n)+1 .
$$

In particular, the number $p+q$ is easily computed as a linear expression of known numbers. Moreover,

$$
n=p q=p(A-p) \Rightarrow p^{2}-A p+n=0,
$$

that is, p can be easily computed as a root of a quadratic equation. One can easily verify that q is the other root of the same equation.
Exercise 4. Find all the integer solutions of $2 x^{3}+x y-7=0$.
Answer. Clearly, $x \neq 0$, hence the above can be rewritten as

$$
y=\frac{-2 x^{3}+7}{x}
$$

Hence, the rational solutions are of the form $\left(x,\left(-2 x^{3}+7\right) / x\right)$, where $x \in \mathbb{Q} \backslash\{0\}$. It follows that the integer solutions are those where $x \in \mathbb{Z} \backslash\{0\}$ and $x \mid\left(-2 x^{3}+\right.$ 7). The latter is true if and only if $x \mid 7$. It follows that the integer solutions are $(1,5),(-1,-9),(7,-97)$ and $(-7,-99)$.

Exercise 5. Find all the integer solutions of $15 x^{2}-7 y^{2}=9$.
Answer. Let (x, y) be an integer solution of the above. Then

$$
-7 y^{2} \equiv 9 \quad(\bmod 5) \Rightarrow y^{2} \equiv 3 \quad(\bmod 5) .
$$

However, the latter is impossible, since $\left(\frac{3}{5}\right)=-1$. It follows that there are no integer solutions of this equation.

Exercise 6. Find all the integer solutions of $221 x+340 y=51$.
Answer. First, we employ the Euclidean algorithm and (from its first part) we get $(221,340)=17$. Since $17 \mid 51$, we know that the equation has integer solutions.

Next, from the second part of the Euclidean algorithm, we find that

$$
17=2 \cdot 340-3 \cdot 221
$$

We multiply the above equation by 3 (because $51 / 17=3$) and get:

$$
51=221(-9)+340 \cdot 6
$$

in other words, $(-9,6)$ is a solution. It follows that all the solutions are

$$
x=-9+20 t, y=6-13 t, t \in \mathbb{Z}
$$

Exercise 7. Find all the integer solutions of $6 x+4 y+8 z=2$.
Answer. First, notice that $(6,4,8)=2 \mid 2$, hence the equation has integer solutions. Then, set $w=3 x+2 y$ (in general, we take the co-prime parts of the coefficients of x and y, so, here, we have $(6,4)=2$ and we take $3=6 / 2$ and $2=4 / 2$ respectively). Now, the original equation becomes

$$
2 w+8 z=2
$$

By using the method for two-variable linear Diophantine equations described earlier, we find that all the solutions of the above are given by

$$
w=5+4 t, z=-1-t, t \in \mathbb{Z}
$$

Now, it remains to solve

$$
3 x+2 y=5+4 t
$$

Again, the two-variable method yields the solutions

$$
x=(5+4 t)+2 s, y=-(5+4 t)-3 s, s \in \mathbb{Z}
$$

It follows that the whole set of solutions of the original equation are given by

$$
x=5+4 t+2 s, y=-5-4 t-3 s, z=-1-t, s, t \in \mathbb{Z}
$$

Exercise 8. Does the equation

$$
\begin{equation*}
9 x^{2}+35 y^{2}-721 z^{2}=0 \tag{1}
\end{equation*}
$$

have non-trivial solutions?
Answer. First, we notice that Legendre's theorem cannot be directly applied to (1), as (i) the coefficients are not square-free and (ii) the coefficients are not pairwise co-prime. However, we can tranform it into one that meets Legendre's theorem criteria.

Namely, we multiply everything by the appearing gcd's (here 7) and gather all the resulting and pre-existing squares and we get the equivalent equation

$$
7(3 x)^{2}+5(7 y)^{2}-103(7 z)^{2}=0
$$

We set $X=3 x, Y=7 y$ and $Z=7 z$ and get

$$
\begin{equation*}
7 X^{2}+5 Y^{2}-103 Z^{2}=0 \tag{2}
\end{equation*}
$$

In the above equation, we can apply Legendre's theorem.
By computing the corresponding Legendre symbols, we can easily check that, in fact, the numbers $-5 \cdot 7,103 \cdot 5$ and $103 \cdot 7$ are quadratic residues modulo 103 , 7 and 5 respectively, so the existence of an integer solution of (2) is ensured.

Let (u, v, w) be this solution. It follows that $\left(\frac{u}{3}, \frac{v}{7}, \frac{z}{7}\right)$ is a (rational) solution of (1) and that $(7 u, 3 v, 3 z)$ is an integer solution of (1).

Exercise 9. Prove that the following equations have integer solutions.

1. $102 x+165 y=3$.
2. $4 x^{2}+211 y=5$.

Answer. 1. Here, we have that $\operatorname{gcd}(102,165)=3 \mid 3$, hence the equation is solvable.
2. This equation is solvable if and only if $211 \mid 5-4 x^{2}$, for some x (in which case y will be the quotient of this division). This is equivalent to the solvability of the congruence

$$
4 x^{2} \equiv 5 \quad(\bmod 211)^{4^{-1} \equiv 53} \Longleftrightarrow(\bmod 211) \quad x^{2} \equiv 54 \quad(\bmod 211) .
$$

The above is solvable iff 54 is a quadratic residue modulo 211, that is, iff $\left(\frac{54}{211}\right)=1$, which we can computationally verify.

Exercise 10. Show that the only integer solution of $x^{2}+y^{2}=3 z^{2}$ is the trivial one.

Answer. Legendre's theorem implies that if $x^{2}+y^{2}-3 z^{2}=0$ has a non-trivial solution, then -1 is a quadratic residue modulo 3 , a contradiction.

Exercise 11. Find all the integer solutions of the equation

$$
\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=m
$$

where $x, y, z, m \in \mathbb{Z}, x, y, z \neq 0$ and x, y, z are pairwise co-prime.
Answer. The equation is equivalent to

$$
x^{2} z+y^{2} x+z^{2} y=m x y z
$$

Let p be a prime divisor of x. The above equation implies that $p \mid z^{2} y$, that is $p \mid y$ or $p \mid z$. However, both possibilities contradict to the fact that x, y, z are pairwise co-prime. Thus x has no prime divisors that is $x= \pm 1$.

Similarly, $y, z= \pm 1$. It follows that the solutions of the original equation are:

$$
\begin{aligned}
(x, y, z, m) & =(1,1,1,3),(1,1,-1,-1),(1,-1,1,-1),(1,-1,-1,-1) \\
& (-1,1,1,-1),(-1,1,-1,-1),(-1,-1,1,-1),(-1,-1,-1,3)
\end{aligned}
$$

Exercise 12. Show that there does not exist any integer n, such that $\frac{7 n-1}{4}, \frac{5 n+3}{12} \in$ \mathbb{Z}.

Answer. Assume that such integer exists. Then $7 n-1=4 k$ and $5 n+3=12 \ell$, for some $k, \ell \in \mathbb{Z}$. We then have that

$$
\left\{\begin{array} { l }
{ 7 n - 1 = 4 k } \\
{ 5 n + 3 = 1 2 \ell }
\end{array} \Rightarrow \left\{\begin{array}{l}
35 n=20 k+5 \\
35 n=84 \ell-21
\end{array} \quad \Rightarrow 84 \ell-20 k=26\right.\right.
$$

However, the latter is not solvable, since $(84,20)=4 \nmid 26$, and we reach a contradiction.

Exercise 13. Find all the right triangles, with integer sides, whose area equals their perimeter.

Answer. Clearly, we are looking for all the Pythagorian triples (a, b, c), such that $a b / 2=a+b+c$. From the characterization of these triples, it follows that we are looking for the triples (d, u, v), such that $\operatorname{gcd}(u, v)=1,0<v<u$, not both of u, v are odd, $d>0$ and

$$
\frac{(d 2 u v) d\left(u^{2}-v^{2}\right)}{2}=(2 d u v)+d\left(u^{2}-v^{2}\right)+d\left(u^{2}+v^{2}\right)
$$

The above is equivalent to

$$
d v(u-v)=2
$$

Since d, v and $u-v$ are positive integers, it follows that,

$$
\left\{\begin{array} { l }
{ d = 1 , } \\
{ v = 1 , } \\
{ u = 3 , }
\end{array} \quad \text { or } \quad \left\{\begin{array} { l }
{ d = 1 , } \\
{ v = 2 , } \\
{ u = 3 , }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
d=2 \\
v=1 \\
u=2
\end{array}\right.\right.\right.
$$

In the first case though, both u, v are odd, so we accept only the second and the third cases. It follows that the only right triangles with the above specifications are the ones with sides $5,12,13$ or $6,8,10$.

Exercise 14. Examine whether the equation $75 x^{2}+27 y^{2}-30 z^{2}=0$ has a nontrivial integer solution.

Answer. Notice that once we divide by 3, the equation becomes

$$
(5 x)^{2}+(3 y)^{2}-10 z^{2}=0
$$

Set $X=5 x, Y=3 y$ and $Z=z$. Now the equation becomes

$$
\begin{equation*}
X^{2}+Y^{2}-10 Z^{2}=0 \tag{3}
\end{equation*}
$$

Notice that we can apply Legendre's theorem in (3). By doing so, we get that we do, in fact, have an integer solution $(X, Y, Z) \neq(0,0,0)$ of (3). It follows that we have a non-trivial rational solution $\left(\frac{X}{5}, \frac{Y}{3}, Z\right)$ of the original equation. Finally, from this we get that $(3 X, 5 Y, 15 Z)$ is a non-trivial integer solution of the original equation.

