UNIVERSITY OF CRETE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS
NUMBER THEORY - MEM204 (SPRING SEMESTER 2019-20)
LECTURER: G. KAPETANAKIS
5th exercise set - Answers
Exercise 1. Let p be a prime and $m \in \mathbb{Z}_{>0}$. Prove that the congruence

$$
x^{m} \equiv 0 \quad\left(\bmod p^{m}\right)
$$

has exactly p^{m-1} solutions.
Answer. We will use induction on m. The statement is clear for $m=1(x \equiv 0$ $(\bmod p)$ is the sole solution).

Assume that $x^{k} \equiv 0\left(\bmod p^{k}\right)$ has exactly p^{k-1} solutions.
Let $f(x)=x^{k+1}$. In order to complete the proof, i.e., show that $f(x) \equiv 0$ $\left(\bmod p^{k+1}\right)$ has p^{k} solutions, it suffices to prove two facts:

1. The solutions of $f(x) \equiv 0\left(\bmod p^{k}\right)$ concide with the solutions of $x^{k} \equiv 0$ $\left(\bmod p^{k}\right)$ (hence there are p^{k-1} of them from the induction hypothesis).
2. If b is one of those solutions, then $f^{\prime}(b) \equiv f(b) \equiv 0\left(\bmod p^{k+1}\right)$ (hence each of them corresponds to p solutions of $\left.f(x) \equiv 0\left(\bmod p^{k+1}\right)\right)$.

Let $\nu_{p}(b)$ stand for the exponent of p in the prime factorization of b. Then, if $f(b) \equiv$ $0\left(\bmod p^{k}\right)$, we get that

$$
p^{k}\left|b^{k+1} \Longleftrightarrow \nu_{p}\left(b^{k+1}\right) \geq k \Longleftrightarrow \nu_{p}(b) \geq 1 \Longleftrightarrow p^{\ell}\right| b^{\ell}
$$

for all $\ell \geq 1$. For $\ell=k$, the above implies the Item 1 , while, for $\ell=k$ and $\ell=k+1$, it implies Item 2.
Exercise 2. Let $n=2^{r} p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}$, where $r \geq 0$ and $n_{i} \geq 0$, be the prime factorization of n. Further, let $(a, n)=1$. Then

$$
x^{2} \equiv a \quad(\bmod n)
$$

is solvable if and only if $x^{2} \equiv a\left(\bmod p_{i}^{n_{i}}\right)$ is solvable for $i=1, \ldots, k$ and $x^{2} \equiv a$ $\left(\bmod 2^{r}\right)$ is solvable (if $r \geq 2$).

Answer. We have that

$$
\begin{aligned}
x^{2} \equiv a \quad(\bmod n) \Longleftrightarrow n \mid x^{2}-a \Longleftrightarrow & p_{i}^{n_{i}} \mid x^{2}-a \forall i \\
& \Longleftrightarrow x^{2} \equiv a\left(\bmod p_{i}^{n_{i}}\right) \forall i .
\end{aligned}
$$

Exercise 3. Let p be an odd prime, $r \geq 1$ and $p \nmid a$. Then $x^{2} \equiv a\left(\bmod p^{r}\right)$ is solvable if and only if $x^{2} \equiv a(\bmod p)$ is solvable.

Answer. First, assume that $x^{2} \equiv a\left(\bmod p^{r}\right)$ is solvable and let b be a solution. Then

$$
b^{2} \equiv a \quad\left(\bmod p^{r}\right) \Rightarrow p^{r}\left|b^{2}-a \Rightarrow p\right| b^{2}-a \Rightarrow b^{2} \equiv a \quad(\bmod p)
$$

hence $x^{2} \equiv a(\bmod p)$ is solvable.
Next, assume that $x^{2} \equiv a(\bmod p)$ is solvable and let b be a solution. We will show that b corresponds to a unique solution b_{k} of $f(x) \equiv 0\left(\bmod p^{k}\right)$, for every $k \geq 1$, where $f(x)=x^{2}-a$. We will use induction on k. For $k=1$ the result is clear. Assume that it holds for $k=m$. Then, for $k=m+1$, we have that $f^{\prime}\left(b_{m}\right)=2 b_{m} \not \equiv 0(\bmod p)$, since $p \nmid 2$ and $b_{m}^{2} \equiv a \not \equiv 0\left(\bmod p^{m}\right) \Rightarrow p \nmid b_{m}$. The result follows.

Exercise 4. Let a be an odd number and $r \geq 3$. Then $x^{2} \equiv a\left(\bmod 2^{r}\right)$ is solvable if and only if $a \equiv 1(\bmod 8)$.

Answer. It is not hard to confirm the statement for $r=3$. Now, assume that $r>3$ and $x^{2} \equiv a\left(\bmod 2^{r}\right)$ is solvable. Then $b^{2}-a \equiv 0\left(\bmod 2^{r}\right)$, for some b. We have that

$$
b^{2}-a \equiv 0 \quad\left(\bmod 2^{r}\right) \Rightarrow 2^{r}\left|b^{2}-a \Rightarrow 8\right| b^{2}-a
$$

that is, $x^{2} \equiv a(\bmod 8)$ is solvable. From the $r=3$ case, this means that $a \equiv 1$ $(\bmod 8)$.

We now focus on the other direction. Namely, assume that $a \equiv 1(\bmod 8)$. We will show that $x^{2} \equiv a\left(\bmod 2^{r}\right)$ is solvable for $r \geq 3$, using induction on r. We have already commented on the $r=3$ case. Assume that $x^{2} \equiv a\left(\bmod 2^{k}\right)$ is solvable, where $k \geq 3$ and let x_{0} be a solution. We will show that, for a suitable y, the number $x=x_{0}+y 2^{k-1}$ is a solution of

$$
x^{2} \equiv a \quad\left(\bmod 2^{k+1}\right)
$$

The latter is equivalent to

$$
x_{0}^{2}+2^{k} x_{0} y+2^{2 k-2} y \equiv a \quad\left(\bmod 2^{k+1}\right)
$$

We have that $2 k-2 \geq k+1$, for $k \geq 3$, hence $2^{2 k-2} \equiv 0\left(\bmod 2^{k+1}\right)$. Furthermore, from the induction hypothesis, $2^{k} \mid x_{0}^{2}-a$, that is $\frac{x_{0}^{2}-a}{2^{k}} \in \mathbb{Z}$. We eventually get that

$$
y x_{0} \equiv \frac{x_{0}^{2}-a}{2^{k}} \quad\left(\bmod 2^{k+1}\right)
$$

Since a is odd, the same goes for x_{0}, hence the above equation has a solution (for y). The result follows.

Exercise 5. Let $n=2^{r} p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}$, where $r \geq 0$ and $n_{i} \geq 0$, be the prime factorization of n. Further, let $(a, n)=1$. Then

$$
x^{2} \equiv a \quad(\bmod n)
$$

is solvable if and only if $\left(\frac{a}{p_{i}}\right)=1$, for all $i=1, \ldots, n$ and

$$
a \equiv\left\{\begin{array}{lll}
1 & (\bmod 8), & \text { if } r \geq 3 \\
1 & (\bmod 4), & \text { if } r=2
\end{array}\right.
$$

Answer. This follows as a corollary of Exercises 2-4.
Exercise 6. Solve the congruence $4 x^{4}+4 x^{3}+6 x^{2}+21 x+7 \equiv 0(\bmod 252)$.
Answer. Our first step is to factor the modulus into primes and split the problem into smaller ones. Here, we have that

$$
252=2^{2} 3^{2} 7
$$

hence, if $f(x)=4 x^{4}+4 x^{3}+6 x^{2}+21 x+7$, it suffices to solve

$$
\begin{align*}
& f(x) \equiv 0 \quad\left(\bmod 2^{2}\right) \tag{1}\\
& f(x) \equiv 0 \quad\left(\bmod 3^{2}\right) \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
f(x) \equiv 0 \quad(\bmod 7) \tag{3}
\end{equation*}
$$

First, we focus on (1). First we solve

$$
f(x) \equiv 0 \quad(\bmod 2)
$$

which is trivial to see that, 1 is its only solution $(\bmod 2)$. Then, we compute

$$
f^{\prime}(x)=16 x^{3}+12 x^{2}+12 x+21
$$

that is $f^{\prime}(1) \not \equiv 0(\bmod 2)$. So, we conclude that there is a unique solution of (1), namely $x \equiv 3(\bmod 4)$.

Then, we focus on (2). First, we consider $f(x) \equiv 0(\bmod 3)$. We easily check that this is equivalent to $x^{2}+x+1 \equiv 0(\bmod 3)$, that has the unique solution $1(\bmod 3)$. Again, we confirm that $f^{\prime}(1) \not \equiv 0(\bmod 3)$, hence we have a unique solution for (2).

In order to find it, we compute $-f(1) / p^{2-1}=-42 / 3=-14$ and $f^{\prime}(1)=61$, that is, we need to solve

$$
61 t \equiv-14 \quad(\bmod 3)
$$

The above is equivalent to $t \equiv 1(\bmod 3)$, so our (unique) solution is $x \equiv t p^{r-1}+$ $b \equiv 4(\bmod 9)$.

Finally, we focus on (3). One can easily see that this is equivalent to

$$
2 x^{2}\left(2 x^{2}+2 x+3\right) \equiv 0 \quad(\bmod 7)
$$

Since 7 is a prime, the latter yields that either $x \equiv 0(\bmod 7)$, or $2 x^{2}+2 x+3 \equiv$ $0(\bmod 7)$. We explicitly check all values of \mathbb{Z}_{7}, and conclude that the second's congruence solutions are 1 and $5(\bmod 7)$.

In total, we have three solutions $x \equiv 0(\bmod 7), x \equiv 1(\bmod 7)$ and $x \equiv 5$ $(\bmod 7)$.

To sum up, the solutions of the original congruence, are the solutions of the systems

$$
\left\{\begin{array}{l}
x \equiv 3 \\
x \equiv 4 \\
x \equiv \\
(\bmod 4), \\
x \equiv 0
\end{array} \quad(\bmod 7), \quad\left\{\begin{array} { l l }
{ x \equiv 3 } & { (\operatorname { m o d } 4) , } \\
{ x \equiv 4 } & { (\operatorname { m o d } 9) , } \\
{ x \equiv 1 } & { (\operatorname { m o d } 7) , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
x \equiv 3 & (\bmod 4), \\
x \equiv 4 & (\bmod 9) \\
x \equiv 5 & (\bmod 7)
\end{array}\right.\right.\right.
$$

The solutions of the above systems are

$$
x \equiv 175,211 \text { and } 103 \quad(\bmod 252)
$$

respectively.
Exercise 7. Compute the following symbols:

$$
\left(\frac{-14}{71}\right),\left(\frac{219}{383}\right),\left(\frac{100}{31}\right),\left(\frac{3}{23}\right)
$$

Answer.

$$
\begin{aligned}
&\left(\frac{-14}{71}\right)=\left(\frac{-1}{71}\right)\left(\frac{2}{71}\right)\left(\frac{7}{71}\right)=(-1)^{\frac{70}{2}+\frac{71^{2}-1}{8}}\left(\frac{7}{71}\right)=(-1)\left(\frac{7}{71}\right) \\
&=(-1) \cdot(-1)^{\frac{70 \cdot 6}{4}}\left(\frac{71}{7}\right)=\left(\frac{71}{7}\right)=\left(\frac{1}{7}\right)=1 . \\
&\left(\frac{219}{383}\right)=\left(\frac{3}{383}\right)\left(\frac{73}{383}\right)=(-1)^{2 \cdot 382 / 4}\left(\frac{383}{3}\right)(-1)^{72 \cdot 382 / 4}\left(\frac{383}{73}\right) \\
&=(-1)\left(\frac{383}{3}\right)\left(\frac{383}{73}\right)=(-1)\left(\frac{2}{3}\right)\left(\frac{18}{73}\right)=\left(\frac{18}{73}\right) \\
&=\left(\frac{2}{73}\right)\left(\frac{3^{2}}{73}\right)=(-1)^{\left(73^{2}-1\right) / 8} \cdot 1=1 . \\
& \quad\left(\frac{100}{31}\right)=\left(\frac{10^{2}}{31}\right)=\left(\frac{10}{31}\right)^{2}=1 . \\
&\left(\frac{3}{23}\right)=(-1)^{2 \cdot 22 / 4}\left(\frac{23}{3}\right)=(-1)\left(\frac{2}{3}\right)=(-1)(-1)=1 .
\end{aligned}
$$

Exercise 8. Check whether $x^{2}-6 x-13 \equiv 0(\bmod 127)$ is solvable.

Answer. The above is equivalent to $y^{2} \equiv 22(\bmod 127)$, where $y=x-3$. In other words, the original congruence is solvable iff 22 is a quadratic residue modulo 127. Also, since 127 is prime, this means that if suffices to compute $\left(\frac{22}{127}\right)$. So, we have that

$$
\begin{aligned}
\left(\frac{22}{127}\right) & =\left(\frac{2}{127}\right)\left(\frac{11}{127}\right)=\left(\frac{11}{127}\right)=-\left(\frac{127}{11}\right)=-\left(\frac{6}{11}\right) \\
& =-\left(\frac{2}{11}\right)\left(\frac{3}{11}\right)=\left(\frac{3}{11}\right)=-\left(\frac{11}{3}\right)=-\left(\frac{2}{3}\right)=1
\end{aligned}
$$

It follows that the original congruence is solvable.
Exercise 9. Check whether $x^{2} \equiv 7(\bmod 19)$ is solvable.
Answer. The above is solvable iff 7 is a quadratic residue modulo 19 and since 19 is a prime, it suffices to compute the symbol $\left(\frac{7}{19}\right)$. We have that

$$
\left(\frac{7}{19}\right)=(-1)^{6 \cdot 18 / 4}\left(\frac{19}{7}\right)=-\left(\frac{5}{7}\right)=-\left(\frac{-2}{7}\right)=\left(\frac{2}{7}\right)=(-1)^{\left(7^{2}-1\right) / 8}=1
$$

thus the original congruence is solvable.
Exercise 10. Find all the primes $10<p<100$, such that $p \mid n^{2}+1$, for some n.
Answer. We have that $p \mid n^{2}+1 \Longleftrightarrow n^{2} \equiv(-1)(\bmod p)$. The latter is solvable iff $\left(\frac{-1}{p}\right)=1$, that is, iff $(p-1) / 2$ is even, i.e., iff $p \equiv 1(\bmod 4)$. It follows that we are looking for all the primes of the form $4 k+1$, where $3 \leq k \leq 24$. These primes are:

$$
13,17,29,37,41,53,61,73,89,97
$$

Exercise 11. Let p be prime, such that $p \equiv 3(\bmod 4)$. If $a^{2}+b^{2} \equiv 0(\bmod p)$, show that $a \equiv b \equiv 0(\bmod p)$.

Answer. Assume that $a \not \equiv 0(\bmod p)$. Then, clearly, $b \not \equiv 0(\bmod p)$ and $a^{2} \equiv-b^{2}$ $(\bmod p)$. Also, we get that

$$
1=\left(\frac{a^{2}}{p}\right)=\left(\frac{-b^{2}}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{b^{2}}{p}\right)=\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}
$$

The latter implies that $(p-1) / 2$ is even, i.e., that $p \equiv 1(\bmod 4)$, a contradiction. It follows that $a \equiv 0(\bmod p)$, which in turn implies $b \equiv 0(\bmod p)$.

Exercise 12. Show that, if n is a positive odd number,

$$
\left(\frac{6}{n}\right)= \begin{cases}1, & \text { if } n \equiv \pm 1 \text { or } \pm 5 \quad(\bmod 24) \\ -1, & \text { if } n \equiv \pm 7 \text { or } \pm 11 \quad(\bmod 24)\end{cases}
$$

Answer. We have that

$$
\left(\frac{6}{n}\right)=\left(\frac{2}{n}\right)\left(\frac{3}{n}\right)=(-1)^{\left(n^{2}-1\right) / 8}\left(\frac{3}{n}\right)=(-1)^{\frac{n^{2}-1}{8}+\frac{n-1}{2}}\left(\frac{n}{3}\right) .
$$

The result follows from the facts

$$
\begin{aligned}
(-1)^{\frac{n^{2}-1}{8}+\frac{n-1}{2}} & = \begin{cases}1, & \text { if } n \equiv 1 \text { or } 3 \quad(\bmod 8), \\
-1, & \text { if } n \equiv-1 \text { or }-3 \quad(\bmod 8),\end{cases} \\
\left(\frac{n}{3}\right) & = \begin{cases}1, & \text { if } n \equiv 1 \quad(\bmod 3), \\
-1, & \text { if } n \equiv-1 \quad(\bmod 3),\end{cases}
\end{aligned}
$$

and the Chinese Remainder Theorem.

