UNIVERSITY OF CRETE DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS NUMBER THEORY - MEM204 (SPRING SEMESTER 2019-20) LECTURER: G. KAPETANAKIS

5th exercise set - Answers

Exercise 1. Let p be a prime and $m \in \mathbb{Z}_{>0}$. Prove that the congruence

$$x^m \equiv 0 \pmod{p^m}$$

has exactly p^{m-1} solutions.

Answer. We will use induction on m. The statement is clear for m = 1 ($x \equiv 0 \pmod{p}$) is the sole solution).

Assume that $x^k \equiv 0 \pmod{p^k}$ has exactly p^{k-1} solutions.

Let $f(x) = x^{k+1}$. In order to complete the proof, i.e., show that $f(x) \equiv 0 \pmod{p^{k+1}}$ has p^k solutions, it suffices to prove two facts:

- 1. The solutions of $f(x) \equiv 0 \pmod{p^k}$ concide with the solutions of $x^k \equiv 0 \pmod{p^k}$ (hence there are p^{k-1} of them from the induction hypothesis).
- 2. If b is one of those solutions, then $f'(b) \equiv f(b) \equiv 0 \pmod{p^{k+1}}$ (hence each of them corresponds to p solutions of $f(x) \equiv 0 \pmod{p^{k+1}}$).

Let $\nu_p(b)$ stand for the exponent of p in the prime factorization of b. Then, if $f(b) \equiv 0 \pmod{p^k}$, we get that

$$p^k \mid b^{k+1} \iff \nu_p(b^{k+1}) \ge k \iff \nu_p(b) \ge 1 \iff p^\ell \mid b^\ell,$$

for all $\ell \ge 1$. For $\ell = k$, the above implies the Item 1, while, for $\ell = k$ and $\ell = k + 1$, it implies Item 2.

Exercise 2. Let $n = 2^r p_1^{n_1} \cdots p_k^{n_k}$, where $r \ge 0$ and $n_i \ge 0$, be the prime factorization of n. Further, let (a, n) = 1. Then

$$x^2 \equiv a \pmod{n}$$

is solvable if and only if $x^2 \equiv a \pmod{p_i^{n_i}}$ is solvable for $i = 1, \ldots, k$ and $x^2 \equiv a \pmod{2^r}$ is solvable (if $r \geq 2$).

Answer. We have that

$$\begin{array}{ll} x^2\equiv a \pmod{n} \iff n\mid x^2-a \iff p_i^{n_i}\mid x^2-a \;\forall i \\ \iff x^2\equiv a \pmod{p_i^{n_i}} \;\forall i. \quad \Box \end{array}$$

Exercise 3. Let p be an odd prime, $r \ge 1$ and $p \nmid a$. Then $x^2 \equiv a \pmod{p^r}$ is solvable if and only if $x^2 \equiv a \pmod{p}$ is solvable.

Answer. First, assume that $x^2 \equiv a \pmod{p^r}$ is solvable and let b be a solution. Then

$$b^2 \equiv a \pmod{p^r} \Rightarrow p^r \mid b^2 - a \Rightarrow p \mid b^2 - a \Rightarrow b^2 \equiv a \pmod{p},$$

hence $x^2 \equiv a \pmod{p}$ is solvable.

Next, assume that $x^2 \equiv a \pmod{p}$ is solvable and let b be a solution. We will show that b corresponds to a unique solution b_k of $f(x) \equiv 0 \pmod{p^k}$, for every $k \geq 1$, where $f(x) = x^2 - a$. We will use induction on k. For k = 1 the result is clear. Assume that it holds for k = m. Then, for k = m + 1, we have that $f'(b_m) = 2b_m \neq 0 \pmod{p}$, since $p \nmid 2$ and $b_m^2 \equiv a \neq 0 \pmod{p^m} \Rightarrow p \nmid b_m$. The result follows.

Exercise 4. Let a be an odd number and $r \ge 3$. Then $x^2 \equiv a \pmod{2^r}$ is solvable if and only if $a \equiv 1 \pmod{8}$.

Answer. It is not hard to confirm the statement for r=3. Now, assume that r>3 and $x^2\equiv a\pmod{2^r}$ is solvable. Then $b^2-a\equiv 0\pmod{2^r}$, for some b. We have that

 $b^2 - a \equiv 0 \pmod{2^r} \Rightarrow 2^r \mid b^2 - a \Rightarrow 8 \mid b^2 - a,$

that is, $x^2 \equiv a \pmod{8}$ is solvable. From the r = 3 case, this means that $a \equiv 1 \pmod{8}$.

We now focus on the other direction. Namely, assume that $a \equiv 1 \pmod{8}$. We will show that $x^2 \equiv a \pmod{2^r}$ is solvable for $r \geq 3$, using induction on r. We have already commented on the r = 3 case. Assume that $x^2 \equiv a \pmod{2^k}$ is solvable, where $k \geq 3$ and let x_0 be a solution. We will show that, for a suitable y, the number $x = x_0 + y2^{k-1}$ is a solution of

$$x^2 \equiv a \pmod{2^{k+1}}.$$

The latter is equivalent to

$$x_0^2 + 2^k x_0 y + 2^{2k-2} y \equiv a \pmod{2^{k+1}}.$$

We have that $2k - 2 \ge k + 1$, for $k \ge 3$, hence $2^{2k-2} \equiv 0 \pmod{2^{k+1}}$. Furthermore, from the induction hypothesis, $2^k \mid x_0^2 - a$, that is $\frac{x_0^2 - a}{2^k} \in \mathbb{Z}$. We eventually get that

$$yx_0 \equiv rac{x_0^2 - a}{2^k} \pmod{2^{k+1}}.$$

Since *a* is odd, the same goes for x_0 , hence the above equation has a solution (for *y*). The result follows.

Exercise 5. Let $n = 2^r p_1^{n_1} \cdots p_k^{n_k}$, where $r \ge 0$ and $n_i \ge 0$, be the prime factorization of n. Further, let (a, n) = 1. Then

$$x^2 \equiv a \pmod{n}$$

is solvable if and only if $\left(\frac{a}{p_i}\right) = 1$, for all $i = 1, \ldots, n$ and

$$a \equiv \begin{cases} 1 \pmod{8}, & \text{if } r \ge 3, \\ 1 \pmod{4}, & \text{if } r = 2. \end{cases}$$

Answer. This follows as a corollary of Exercises 2-4.

Exercise 6. Solve the congruence $4x^4 + 4x^3 + 6x^2 + 21x + 7 \equiv 0 \pmod{252}$.

Answer. Our first step is to factor the modulus into primes and split the problem into smaller ones. Here, we have that

$$252 = 2^2 3^2 7$$
,

hence, if $f(x) = 4x^4 + 4x^3 + 6x^2 + 21x + 7$, it suffices to solve

$$f(x) \equiv 0 \pmod{2^2},\tag{1}$$

$$f(x) \equiv 0 \pmod{3^2} \tag{2}$$

and

$$f(x) \equiv 0 \pmod{7}.$$
 (3)

First, we focus on (1). First we solve

$$f(x) \equiv 0 \pmod{2},$$

which is trivial to see that, 1 is its only solution (mod 2). Then, we compute

$$f'(x) = 16x^3 + 12x^2 + 12x + 21,$$

that is $f'(1) \not\equiv 0 \pmod{2}$. So, we conclude that there is a unique solution of (1), namely $x \equiv 3 \pmod{4}$.

Then, we focus on (2). First, we consider $f(x) \equiv 0 \pmod{3}$. We easily check that this is equivalent to $x^2 + x + 1 \equiv 0 \pmod{3}$, that has the unique solution 1 (mod 3). Again, we confirm that $f'(1) \not\equiv 0 \pmod{3}$, hence we have a unique solution for (2).

In order to find it, we compute $-f(1)/p^{2-1} = -42/3 = -14$ and f'(1) = 61, that is, we need to solve

$$61t \equiv -14 \pmod{3}.$$

The above is equivalent to $t \equiv 1 \pmod{3}$, so our (unique) solution is $x \equiv tp^{r-1} + b \equiv 4 \pmod{9}$.

Finally, we focus on (3). One can easily see that this is equivalent to

$$2x^2(2x^2 + 2x + 3) \equiv 0 \pmod{7}.$$

Since 7 is a prime, the latter yields that either $x \equiv 0 \pmod{7}$, or $2x^2 + 2x + 3 \equiv 0 \pmod{7}$. We explicitly check all values of \mathbb{Z}_7 , and conclude that the second's congruence solutions are 1 and 5 (mod 7).

In total, we have three solutions $x \equiv 0 \pmod{7}$, $x \equiv 1 \pmod{7}$ and $x \equiv 5 \pmod{7}$.

To sum up, the solutions of the original congruence, are the solutions of the systems

$$\begin{cases} x \equiv 3 \pmod{4}, \\ x \equiv 4 \pmod{9}, \\ x \equiv 0 \pmod{7}, \end{cases} \begin{cases} x \equiv 3 \pmod{4}, \\ x \equiv 4 \pmod{9}, \\ x \equiv 1 \pmod{7}, \end{cases} \text{ and } \begin{cases} x \equiv 3 \pmod{4}, \\ x \equiv 4 \pmod{9}, \\ x \equiv 4 \pmod{9}, \\ x \equiv 5 \pmod{7}. \end{cases}$$

The solutions of the above systems are

$$x \equiv 175, \ 211 \ \text{and} \ 103 \pmod{252}$$

respectively.

Exercise 7. Compute the following symbols:

$$\left(\frac{-14}{71}\right), \left(\frac{219}{383}\right), \left(\frac{100}{31}\right), \left(\frac{3}{23}\right).$$

Answer.

$$\left(\frac{-14}{71}\right) = \left(\frac{-1}{71}\right) \left(\frac{2}{71}\right) \left(\frac{7}{71}\right) = (-1)^{\frac{70}{2} + \frac{71^2 - 1}{8}} \left(\frac{7}{71}\right) = (-1) \left(\frac{7}{71}\right)$$
$$= (-1) \cdot (-1)^{\frac{70 \cdot 6}{4}} \left(\frac{71}{7}\right) = \left(\frac{71}{7}\right) = \left(\frac{1}{7}\right) = 1.$$

$$\begin{pmatrix} 219\\ \overline{383} \end{pmatrix} = \begin{pmatrix} 3\\ \overline{383} \end{pmatrix} \begin{pmatrix} 73\\ \overline{383} \end{pmatrix} = (-1)^{2 \cdot 382/4} \begin{pmatrix} 383\\ \overline{3} \end{pmatrix} (-1)^{72 \cdot 382/4} \begin{pmatrix} \overline{383}\\ \overline{73} \end{pmatrix}$$
$$= (-1) \begin{pmatrix} 383\\ \overline{3} \end{pmatrix} \begin{pmatrix} 383\\ \overline{73} \end{pmatrix} = (-1) \begin{pmatrix} 2\\ \overline{3} \end{pmatrix} \begin{pmatrix} 18\\ \overline{73} \end{pmatrix} = \begin{pmatrix} 18\\ \overline{73} \end{pmatrix}$$
$$= \begin{pmatrix} 2\\ \overline{73} \end{pmatrix} \begin{pmatrix} 3^2\\ \overline{73} \end{pmatrix} = (-1)^{(73^2 - 1)/8} \cdot 1 = 1.$$
$$\begin{pmatrix} 100\\ \overline{31} \end{pmatrix} = \begin{pmatrix} 10^2\\ \overline{31} \end{pmatrix} = \begin{pmatrix} 10\\ \overline{31} \end{pmatrix}^2 = 1.$$
$$\begin{pmatrix} 3\\ \overline{23} \end{pmatrix} = (-1)^{2 \cdot 22/4} \begin{pmatrix} 23\\ \overline{3} \end{pmatrix} = (-1) \begin{pmatrix} 2\\ \overline{3} \end{pmatrix} = (-1)(-1) = 1.$$

Exercise 8. Check whether $x^2 - 6x - 13 \equiv 0 \pmod{127}$ is solvable.

4

Answer. The above is equivalent to $y^2 \equiv 22 \pmod{127}$, where y = x-3. In other words, the original congruence is solvable iff 22 is a quadratic residue modulo 127. Also, since 127 is prime, this means that if suffices to compute $\binom{22}{127}$. So, we have that

$$\binom{22}{127} = \binom{2}{127} \binom{11}{127} = \binom{11}{127} = -\binom{127}{11} = -\binom{6}{11}$$
$$= -\binom{2}{11} \binom{3}{11} = \binom{3}{11} = -\binom{11}{3} = -\binom{2}{3} = 1.$$

It follows that the original congruence is solvable.

Exercise 9. Check whether $x^2 \equiv 7 \pmod{19}$ is solvable.

Answer. The above is solvable iff 7 is a quadratic residue modulo 19 and since 19 is a prime, it suffices to compute the symbol $\left(\frac{7}{19}\right)$. We have that

$$\left(\frac{7}{19}\right) = (-1)^{6 \cdot 18/4} \left(\frac{19}{7}\right) = -\left(\frac{5}{7}\right) = -\left(\frac{-2}{7}\right) = \left(\frac{2}{7}\right) = (-1)^{(7^2 - 1)/8} = 1,$$

thus the original congruence is solvable.

Exercise 10. Find all the primes $10 , such that <math>p \mid n^2 + 1$, for some n.

Answer. We have that $p \mid n^2 + 1 \iff n^2 \equiv (-1) \pmod{p}$. The latter is solvable iff $\left(\frac{-1}{p}\right) = 1$, that is, iff (p-1)/2 is even, i.e., iff $p \equiv 1 \pmod{4}$. It follows that we are looking for all the primes of the form 4k + 1, where $3 \leq k \leq 24$. These primes are:

$$13, 17, 29, 37, 41, 53, 61, 73, 89, 97.$$

Exercise 11. Let p be prime, such that $p \equiv 3 \pmod{4}$. If $a^2 + b^2 \equiv 0 \pmod{p}$, show that $a \equiv b \equiv 0 \pmod{p}$.

Answer. Assume that $a \not\equiv 0 \pmod{p}$. Then, clearly, $b \not\equiv 0 \pmod{p}$ and $a^2 \equiv -b^2 \pmod{p}$. Also, we get that

$$1 = \left(\frac{a^2}{p}\right) = \left(\frac{-b^2}{p}\right) = \left(\frac{-1}{p}\right)\left(\frac{b^2}{p}\right) = \left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}.$$

The latter implies that (p-1)/2 is even, i.e., that $p \equiv 1 \pmod{4}$, a contradiction. It follows that $a \equiv 0 \pmod{p}$, which in turn implies $b \equiv 0 \pmod{p}$.

Exercise 12. Show that, if *n* is a positive odd number,

$$\begin{pmatrix} 6\\ n \end{pmatrix} = \begin{cases} 1, & \text{if } n \equiv \pm 1 \text{ or } \pm 5 \pmod{24}, \\ -1, & \text{if } n \equiv \pm 7 \text{ or } \pm 11 \pmod{24}. \end{cases}$$

Answer. We have that

$$\binom{6}{n} = \binom{2}{n}\binom{3}{n} = (-1)^{(n^2 - 1)/8}\binom{3}{n} = (-1)^{\frac{n^2 - 1}{8} + \frac{n - 1}{2}}\binom{n}{3}.$$

The result follows from the facts

$$(-1)^{\frac{n^2-1}{8}+\frac{n-1}{2}} = \begin{cases} 1, & \text{if } n \equiv 1 \text{ or } 3 \pmod{8}, \\ -1, & \text{if } n \equiv -1 \text{ or } -3 \pmod{8}, \end{cases}$$
$$\binom{n}{3} = \begin{cases} 1, & \text{if } n \equiv 1 \pmod{3}, \\ -1, & \text{if } n \equiv -1 \pmod{3}, \end{cases}$$

and the Chinese Remainder Theorem.