MEM204-NuMber Theory

3rd virtual lecture

Giorgos Kapetanakis
Spring semester 2019-20-03/04/2020
University of Crete

Systems of Linear Congruences

Introduction

Let $a_{i}, b_{i} \in \mathbb{Z}$ and $n_{i}>1$ be fixed numbers for $i=1, \ldots, k$. A set of congruences of the form

$$
\left\{\begin{align*}
a_{1} x \equiv b_{1} & \left(\bmod n_{1}\right) \tag{1}\\
& \vdots \\
a_{k} x \equiv b_{k} & \left(\bmod n_{k}\right)
\end{align*}\right.
$$

where x varies, is called a system of linear congruences. Some $x_{0} \in \mathbb{Z}$ that satisfies all of the congruences of (1) is a solution of the system.

In this lecture, our aim is to characterize whether (1) is solvable or not and, in the former case, explicitly find its solutions.

Some examples

Example

Take the system

$$
\left\{\begin{array}{l}
3 x \equiv-1 \quad(\bmod 10) \\
2 x \equiv 1 \quad(\bmod 5)
\end{array}\right.
$$

One easily checks that $x=3$ is a solution of the system.

Some examples

Example

Take the system

$$
\left\{\begin{array}{l}
x \equiv 1 \quad(\bmod 6) \\
x \equiv 2 \quad(\bmod 4)
\end{array}\right.
$$

This system is impossible, since the first congruence's solutions are odd numbers and the second one's even.

Remark

Clearly a system can have a solution only if each one of its congruences is solvable. However, the inverse is not true, as the above example demonstrates.

Some definitions

Definition

We say that some $a(\bmod c)$ is a solution of a system of linear congruences, if all $x \in \bar{a}$ (where $\bar{a} \in \mathbb{Z}_{c}$) are solutions of that system.

Definition

Two systems of linear congruences are called equivalent (ıoodúv $\alpha \mu \alpha$), if they both share the same set of solutions.

The Chinese Remainder Theorem

The main result of this lecture is the following theorem known as the Chinese Remainder Theorem (Kıv $\dot{\zeta}$ Іко $\Theta \varepsilon \dot{\omega} \rho \eta \mu \alpha$ Үполоітшv).

Theorem (Chinese Remainder Theorem)

Let $b_{1}, \ldots, b_{k} \in \mathbb{Z}$ and $n_{1}, \ldots, n_{k}>1$ be such that $\left(n_{i}, n_{j}\right)=1$ for all $i \neq j$. Then the system

$$
\begin{cases}x \equiv b_{1} & \left(\bmod n_{1}\right), \tag{2}\\ \vdots \\ x \equiv b_{k} & \left(\bmod n_{k}\right),\end{cases}
$$

has a unique solution $\left(\bmod n_{1} \cdots n_{k}\right)$.

Proof

The proof is comprised by 3 parts: (a) find a solution x_{0}, (b) show that every $x^{\prime} \equiv x_{0}\left(\bmod n_{1} \cdots n_{k}\right)$ is also a solution and (c) show that every solution is also $\equiv x_{0}\left(\bmod n_{1} \cdots n_{k}\right)$.

Set $N_{j}:=\frac{\prod_{i=1}^{k} n_{i}}{n_{j}}$. Since n_{1}, \ldots, n_{k} are pairwise co-prime, we have that $\left(N_{j}, n_{j}\right)=1$ for all j. It follows that, for every j, N_{j} is invertible $\left(\bmod n_{j}\right)$. Let $x_{j} \equiv N_{j}^{-1}\left(\bmod n_{j}\right)$. Now, set

$$
x_{0}=b_{1} N_{1} x_{1}+\cdots+b_{k} N_{k} x_{k}
$$

Next, notice that, for every $i \neq j, n_{i} \mid N_{j}$, that is, $b_{j} N_{j} x_{j} \equiv 0$ $\left(\bmod n_{i}\right)$. It follows that for every i,

$$
x_{0} \equiv b_{i} N_{i} x_{i} \equiv b_{i} \quad\left(\bmod n_{i}\right)
$$

in other words x_{0} is a solution of the System (2). This concludes Part (a).

Proof

Next, let $x^{\prime} \equiv x_{0}\left(\bmod n_{1} \cdots n_{k}\right)$. Then, clearly, for every i, we have that $x^{\prime} \equiv x_{0} \equiv b_{i}\left(\bmod n_{i}\right)$. This concludes Part (b).

Finally, suppose that y is a solution of the system. Then, for every i, we have that

$$
y \equiv b_{i} \equiv x_{0} \quad\left(\bmod n_{i}\right)
$$

It follows that, for every $i, n_{i} \mid y-x_{0}$. Since n_{1}, \ldots, n_{k} are pairwise co-prime, this implies that $n_{1} \cdots n_{k} \mid y-x_{0}$, that is, $y \equiv x_{0}\left(\bmod n_{1} \cdots n_{k}\right)$. The proof is now complete.

A method

A closer look at the proof of the Chinese Remainder Theorem reveals a method for solving this kind of systems.

For example, lets solve the system

$$
\begin{cases}x \equiv 2 & (\bmod 5) \\ x \equiv 3 & (\bmod 7) \\ x \equiv 4 & (\bmod 11)\end{cases}
$$

Since 5, 7, 11 are pairvise co-prime, the Chinese Remainder Theorem implies that the above system has a unique solution modulo $5 \cdot 7 \cdot 11=385$.

A method

Using the notation of the proof, we compute

$$
N_{1}=7 \cdot 11=77, N_{2}=5 \cdot 11=55, N_{3}=5 \cdot 7=35 .
$$

Now, for $i=1,2,3$, set $x_{i} \equiv N_{i}^{-1}\left(\bmod n_{i}\right)$. We compute

$$
x_{1} \equiv 3 \quad(\bmod 5), x_{2} \equiv 6 \quad(\bmod 7), x_{3} \equiv 6 \quad(\bmod 11)
$$

It follows that the solution of the system is

$$
x \equiv 77 \cdot 3 \cdot 2+55 \cdot 6 \cdot 3+35 \cdot 6 \cdot 4 \equiv 2292 \equiv 367 \quad(\bmod 385)
$$

Generalizing the Chinese Remainder Theorem

The following theorem generalizes the Chinese Remainder Theorem.

Theorem

The system

$$
\begin{cases}x \equiv b_{1} & \left(\bmod n_{1}\right) \\ & \vdots \\ x \equiv b_{k} & \left(\bmod n_{k}\right)\end{cases}
$$

is solvable if and only if $\left(n_{i}, n_{j}\right) \mid b_{i}-b_{j}$, for every $i \neq j$. In this case, (3) has a unique solution (mod $\left.\left[n_{1}, \ldots, n_{k}\right]\right)$.

Proof.

Omitted.

An example

Example

Solve the system

$$
\left\{\begin{array}{l}
x \equiv 1 \quad(\bmod 15) \\
x \equiv 7 \\
(\bmod 18)
\end{array}\right.
$$

An example

The last theorem implies that the system has a unique solution (mod 90). Let x_{0} be a solution. The first congruence implies

$$
x_{0}=1+15 k, k \in \mathbb{Z}
$$

Now, the second congruence yields

$$
\begin{aligned}
& 1+15 k \equiv 7 \quad(\bmod 18) \\
\Longleftrightarrow & 15 k \equiv 6 \quad(\bmod 18) \\
\Longleftrightarrow & 5 k \equiv 2 \quad(\bmod 6) \\
\Longleftrightarrow & k \equiv 4 \quad(\bmod 6) \\
\Longleftrightarrow & k=4+6 \ell, \ell \in \mathbb{Z} .
\end{aligned}
$$

It follows that $x_{0}=1+15 k=1+15(4+6 \ell)=61+90 \ell, \ell \in \mathbb{Z}$. In other words $x_{0} \equiv 61(\bmod 90)$.

Another example

Example

Solve the system

$$
\left\{\begin{array}{l}
2 x \equiv 4 \quad(\bmod 5) \\
x \equiv-27 \quad(\bmod 22) \\
3 x \equiv 30 \quad(\bmod 39)
\end{array}\right.
$$

Another example

First, we will simplify the three congruences, in order to get an equivalent system in the form of the statement of the Chinese Remainder Theorem.

Towards this end, we solve the first congruence, using known methods, and we get

$$
\begin{equation*}
x \equiv 2 \quad(\bmod 5) . \tag{4}
\end{equation*}
$$

The second one can be rewritten as

$$
\begin{equation*}
x \equiv 17 \quad(\bmod 22) . \tag{5}
\end{equation*}
$$

The third one does not have a unique solution modulo 39 (in fact it has three of them). Nonetheless, it is equivalent to the congruence

$$
\begin{equation*}
x \equiv 10 \quad(\bmod 13) . \tag{6}
\end{equation*}
$$

Another example

Now the Chinese Remainder Theorem implies that the system has a unique solution (mod 1430). Let x be a solution.
Congruence (4) implies

$$
x=2+5 a, a \in \mathbb{Z}
$$

We replace this in (5) and get

$$
2+5 a \equiv 17 \quad(\bmod 22) \Longleftrightarrow a \equiv 3 \quad(\bmod 22)
$$

It follows that $a=3+22 b$, that is,

$$
x=2+5(3+22 b)=17+110 b, b \in \mathbb{Z}
$$

Another example

Finally, we replace the latter in (6) and get

$$
17+110 b \equiv 10 \quad(\bmod 13) \Longleftrightarrow b \equiv 1 \quad(\bmod 13)
$$

It follows that $b=1+13 c$, that is,

$$
x=17+110(1+13 c)=127+1430 c, c \in \mathbb{Z}
$$

In other words, we have shown that

$$
x \equiv 127 \quad(\bmod 1430)
$$

is the solution of the system.

Stay home, stay safe!

