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4th exercise set - Answers

Exercise 1. Solve the following linear congruences:

1. 137x ≡ 4 (mod 102).
2. 7x ≡ 8 (mod 30).
3. 24x ≡ 22 (mod 33).
4. 2086x ≡ −1624 (mod 1729).

Answer. 1. Since 137 ≡ 35 (mod 102), we can simplify the congruence as

35x ≡ 4 (mod 102).

Then, with the help of the euclidean algorithm, we compute 35−1
= 35. We multiply

both sides of the congruence by 35 and we get

x ≡ 4 · 35 ≡ 140 ≡ 38 (mod 102).

2. We will solve this congruence using Euler’s theorem. Since (7, 30) = 1, Euler’s
theorem implies that

7ϕ(30) ≡ 1 (mod 30) ⇒ 7−1 ≡ 7ϕ(30)−1 ≡ 77 (mod 30),

since ϕ(30) = 8. We will now demonstrate an effective way for computing large
powers.
First write the exponent as a sum of powers of 2 (i.e., write it in binary). Here, 7 =
1 + 2 + 4.
Secondly compute the corresponding powers of the base (of coursemodulo themodulus),
by constantly raising to the square. Here:

71 ≡ 1 (mod 30)

72 ≡ 49 ≡ 19 (mod 30)

74 ≡ (72)2 ≡ 192 ≡ 361 ≡ 1 (mod 30).

Finally, multiply the corresponding powers as follows:

7−1 ≡ 77 ≡ 717274 ≡ 7 · 19 · 1 ≡ 133 ≡ 13 (mod 30).

It follows that 7x ≡ 8 (mod 30) ⇐⇒ x ≡ 8 · 13 ≡ 104 ≡ 14 (mod 30).

3. The congruence is not solvable, since (24, 33) = 3 ∤ 22.
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4. First, note that, in Z1729, 2086 = 357 and −1624 = 105, so the congruence is
equivalent to

357x ≡ 105 (mod 1729).

Next, we use the euclidean algorithm yields (357, 1729) = 7. However, 105 = 7 · 15.
This implies that the congruence has exactly 7 solutions. Our next step is to identify
one solution and, based on this, find the other 6.
Further, the euclidean algorithm yields

7 = 19 · 1729− 92 · 357.

This implies

−92 · 357 ≡ 7 (mod 1729)

⇒ (−92 · 15) · 357 ≡ 7 · 15 (mod 1729)

⇒ 357 · 349 ≡ 105 (mod 1729).

It follows that 349 is a solution of the congruence. If follows that all the solutions of
the congruence are x ≡ 349, 596, 843, 1090, 1337, 1584, 102 (mod 1729).

Exercise 2. A salesman is visiting a town every 5 months. Will he ever visit the town on
March?

Answer. We label each month with its corresponding number, i.e., 3 stands for March.
Assume that the first visit of the salesman to the city occurred on the month labeled a.
The second visit will occur on the month labeled a + 5 (mod 12). The third on the month
a+ 2 · 5 (mod 12) and so on.

Hence the question translates to whether there exists an x, such that a + 5x ≡ 3
(mod 12). This is equivalent to 5x ≡ (3 − a) (mod 12), which has a unique solution
(mod 12) (regardless a), since (5, 12) = 1.

Exercise 3. Solve the following systems:

1.
{
3x ≡ −1 (mod 10)

2x ≡ 1 (mod 5)

2.
{
x ≡ 1 (mod 6)

x ≡ 2 (mod 4)

3.
{
x ≡ 1 (mod 15)

x ≡ 7 (mod 18)

4.


2x ≡ 4 (mod 5)

x ≡ −27 (mod 22)

3x ≡ 30 (mod 39)
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Answer. 1. One easily checks that the system is equal to{
x ≡ 3 (mod 10),

x ≡ 3 (mod 5),

where, clearly, the first congruence implies the second. Hence the solution is x ≡ 3
(mod 10).

2. The system is impossible, since the first congruence’s solutions are odd numbers and
the second one’s even.

3. Since (15, 18) = 3 | 6 = 7−1 and lcm(15, 18) = 90, the system has a unique solution
(mod 90). Let x0 be a solution. The first congruence implies

x0 = 1 + 15k, k ∈ Z.

Now, the second congruence yields

1 + 15k ≡ 7 (mod 18)

⇐⇒ 15k ≡ 6 (mod 18)

⇐⇒ 5k ≡ 2 (mod 6)

⇐⇒ k ≡ 4 (mod 6)

⇐⇒ k = 4 + 6ℓ, ℓ ∈ Z.

It follows that x0 = 1 + 15k = 1 + 15(4 + 6ℓ) = 61 + 90ℓ, ℓ ∈ Z. In other words
x0 ≡ 61 (mod 90).

4. First, we will simplify the three congruences, in order to get an equivalent system in
the form of the statement of the Chinese Remainder Theorem. Towards this end, we
solve the first congruence, using known methods, and get

x ≡ 2 (mod 5). (1)

The second one can be rewritten as

x ≡ 17 (mod 22). (2)

The third one does not have a unique solution modulo 39 (in fact it has three of them).
Nonetheless, it is equivalent to the congruence

x ≡ 10 (mod 13). (3)

Now the Chinese Remainder Theorem implies that the system has a unique solution
(mod 1430). Let x be a solution. Congruence (1) implies

x = 2 + 5a, a ∈ Z.

We replace this in (2) and get

2 + 5a ≡ 17 (mod 22) ⇐⇒ a ≡ 3 (mod 22).
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It follows that a = 3 + 22b, that is,

x = 2 + 5(3 + 22b) = 17 + 110b, b ∈ Z.

Finally, we replace the latter in (3) and get

17 + 110b ≡ 10 (mod 13) ⇐⇒ b ≡ 1 (mod 13).

It follows that b = 1 + 13c, that is,

x = 17 + 110(1 + 13c) = 127 + 1430c, c ∈ Z.

In other words, we have shown that x ≡ 127 (mod 1430) is the solution of the
system.

Exercise 4 (Brahmagupta). A basket is full of eggs. When the eggs are taken out of a basket
2, 3, 4, 5, 6, 7 at a time, the remainders are 1, 2, 3, 4, 5 and 0 respectively. How many eggs
were in the basket?

Answer. Let x be the number of eggs in the basket. From the statement we get that

x ≡ 1 (mod 2),

x ≡ 2 (mod 3),

x ≡ 3 (mod 4),

x ≡ 4 (mod 5),

x ≡ 5 (mod 6),

x ≡ 0 (mod 7).

The third congruence implies the first and the fifth implies the second. Hence, the system
can be simplified as 

x ≡ 3 (mod 4),

x ≡ 4 (mod 5),

x ≡ 5 (mod 6),

x ≡ 0 (mod 7).

Now, notice that for each pair of the above congruences, the gcd of the moduluses divides
the corresponding difference of factors, hence the system has a unique solution molulo
lcm(4, 5, 6, 7) = 420.

We easily check that the system{
x ≡ 3 (mod 4),

x ≡ 5 (mod 6),

is equivalent to x ≡ 11 (mod 12) and the system{
x ≡ 4 (mod 5),

x ≡ 0 (mod 7),
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is equivalent to x ≡ 28 (mod 35).
From the above, the original system is reduced to{

x ≡ 11 (mod 12),

x ≡ 28 (mod 35),

whose unique solution is x ≡ 203 (mod 420). It follows that the basket contains 203+420k
eggs, for some k ≥ 0.

Exercise 5 (The Chinese Cook Problem). In some looting, 17 pirates acquire a treasure of
gold pieces. They decide to share the treasure and give the remainder to their Chinese cook.
This way, the cook got 3 gold pieces. Later, at a naval battle, 6 of the pirates were killed and
the remaining pirates decided to re-share the treasure in the same way. Now, the cook got
4 gold pieces. Later still, they had a shipwreck and only six of the original pirates (plus the
cook) survived. They re-shared the treasure in the same way. Now, the Chinese cook got
5 gold pieces. While on shore, the cook poisoned the crew and got the whole treasure for
himself. What is the minimum number of gold pieces that the Chinese cook has?

Answer. Let x > 0 be the total number of gold pieces of the treasure. The three consecutive
sharings imply that 

x ≡ 3 (mod 17),

x ≡ 4 (mod 11),

x ≡ 5 (mod 6).

Since 17, 11 and 6 are pairwise co-prime, the Chinese Remainder Theorem implies that the
above system has a unique solution modulo 17 · 11 · 6 = 1122.

From the first congruence, we get that

x = 3 + 17α, α ∈ Z.

We combine the above with the second congruence and get that

3 + 17α ≡ 4 (mod 11) ⇐⇒ α ≡ 2 (mod 11)

⇐⇒ α = 2 + 11β, β ∈ Z.

It follows that
x = 3 + 17(2 + 11β) = 37 + 187β, β ∈ Z.

We combine the latter expression for x with the third congruence and get

37 + 187β ≡ 5 (mod 6) ⇐⇒ β ≡ 4 (mod 6)

⇐⇒ β = 4 + 6γ, γ ∈ Z.

It follows that x = 37 + 187(4 + 6γ) = 785 + 1122γ, γ ∈ Z, that is, the cook has at least
785 gold pieces.

Exercise 6. On a 12-hour clock, we put a blue marble on position 1 and a red marble on
position 2. Every hour we move the blue marble by 3 positions and the red marble by 1. Will
the two marbles ever meet?
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Answer. After x hours, the blue marble will be on the position 1 + 3x (mod 12), while the
red one on the position 2 + x (mod 12). Hence, the two marbles will meet if, for some x,

1 + 3x ≡ 2 + x (mod 12) ⇐⇒ 2x ≡ 1 (mod 12).

However, since (2, 12) = 2 ∤ 1, the above congruence is not solvable.

Exercise 7. Find a congruence equivalent with the system{
x ≡ 1 (mod 4),

x ≡ 2 (mod 3).

Answer. Since (3, 4) = 1, the Chinese Remainder Theorem implies that the above has a
unique solution modulo 12. The first congruence implies that

x = 1 + 4k, k ∈ Z.

Now, the second one yields

1 + 4k ≡ 2 (mod 3) ⇒ k ≡ 1 (mod 3) ⇒ k = 1 + 3ℓ, ℓ ∈ Z.

It follows that
x = 1 + 4(1 + 3ℓ) = 5 + 12ℓ, ℓ ∈ Z.

It follows that the solution is x ≡ 5 (mod 12).

Exercise 8. Solve x3 + 4x+ 8 ≡ 0 (mod 15).

Answer. Let f(x) = x3 + 4x+ 8. Since 15 = 3 · 5, The congruence f(x) ≡ 0 (mod 15) is
solvable iff the congruences f(x) ≡ 0 (mod 3) and f(x) ≡ 0 (mod 5) are solvable.

We focus on f(x) ≡ 0 (mod 5). This is equal to

x3 − x− 2 ≡ 0 (mod 5).

We check all the values x = 0,±1,±2 and verify that none is a solution, that is, the
congruence is not solvable. We conclude that the congruence f(x) ≡ 0 (mod 15) is also
not solvable.

Exercise 9. Solve the following congruences:

1. 121x5 + x2 − 24x+ 143 ≡ 0 (mod 11).
2. 3x7 + 2x6 + x5 + 2x3 + 6 ≡ 0 (mod 5).
3. 7x7 + 16x2 + 18 ≡ 0 (mod 21).

Answer. 1. First, we replace the coefficients, in order to get a simpler expression of the
original congruence as follows:

x2 − 2x ≡ 0 (mod 11).

Then,we check the validity of the above for all the elements ofZ11, i.e. {0̄,±1̄,±2̄,±3̄,±5̄}
and easily see that the solutions are 0̄ and 2̄.
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2. Fermat’s theorem implies that for every a ∈ Z, we have a5 ≡ a (mod 5). Hence

a7 ≡ a5a2 ≡ a · a2 ≡ a3 (mod 5),

a6 ≡ a5a ≡ aa ≡ a2 (mod 5),

a5 ≡ a (mod 5).

So, an equivalent congruence would be

3x3 + 2x2 + x+ 2x3 + 6 ≡ 5x3 + 2x2 + x+ 6 ≡ 2x2 + x+ 1 (mod 5).

We easily check that the latter is not satisfied for x = 0,±1,±2, so we conclude that
it has no solutions.

3. Since 21 = 3 · 7, we can instead study the congruences

f(x) ≡ 0 (mod 3) and f(x) ≡ 0 (mod 7).

Lets beginwith the first one. After employing Fermat’s theorem,we check that f(x) ≡
0 (mod 3) is equivalent to x2 + x+ 1 ≡ 0 (mod 3). We explicitly check x ≡ 0,±1
(mod 3) and we verify that x ≡ 1 (mod 3) is the unique solution.
Now, we turn our attention to the second one. We verify that f(x) ≡ 0 (mod 7) is
equal to 2x2 + 3 ≡ 0 (mod 7). We explicitly check x ≡ 0,±1,±2,±3 (mod 7) and
find the solutions x ≡ ±3 (mod 7).
It follows that the solutions of the original congruence are exactly the solutions of
the following systems{

x ≡ 1 (mod 3),

x ≡ 3 (mod 7),
and

{
x ≡ 1 (mod 3),

x ≡ 4 (mod 7).

The Chinese Remainder Theorem ensures that both systems have a unique solution
modulo 21.We explicitly solve both of them (using anymethod) and attain the solutions

x ≡ 10 (mod 21) and x ≡ 4 (mod 21).
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