1. (HW 10.2) If $a \in \mathbb{R} \backslash\{0\}$ and $0<\sigma<1$ show that the sequence $\left\{a n^{\sigma}\right\}$ is uniformly distributed in [0, 1]. ($\{x\}$ denotes the fractional part of $x \in \mathbb{R}$.)
${ }^{\bullet}$ Use Weyl's criterion. Approximate the sum $\sum_{n=1}^{N} e^{2 \pi i k\left\{a n^{\sigma}\right\}}=\sum_{n=1}^{N} e^{2 \pi i k a n^{\sigma}}$ by the integral $\int_{1}^{N} e^{2 \pi i k a x^{\sigma}} d x$ and bound their difference using the Mean Value Theorem in every interval of the form $[i, i+1]$.

Solution:

Define $f_{k}(x)=e^{2 \pi i k a x^{\sigma}}$. Then $f_{k}^{\prime}(x)=2 \pi i k a \sigma x^{\sigma-1} e^{2 \pi i k a x^{\sigma}}$.
We must show that for all integers $k \neq 0$ we have

$$
\sum_{n=1}^{N} e^{2 \pi i k\left\{a n^{\sigma}\right\}}=o(N), \text { as } N \rightarrow \infty
$$

Since $\{t\}=t-\lfloor t\rfloor$ for any t it follows that the above sum is the same (we ignore the last term which is at most 1 , so it cannot affect the conclusion) as

$$
S_{k, N}=\sum_{n=1}^{N-1} e^{2 \pi i k a n^{\sigma}}=\sum_{n=1}^{N-1} f_{k}(n)
$$

We will compare this sum to the integral

$$
I_{k, N}=\int_{1}^{N} e^{2 \pi i k a x^{\sigma}} d x=\int_{1}^{N} f_{k}(x) d x
$$

First we compute $I_{k, N}$. It differs by a bounded quantity from $\int_{0}^{N} e^{2 \pi i k a x^{\sigma}} d x$ so we compute the latter integral which is easier and we will show that it is $o(N)$ as $N \rightarrow \infty$. After the change of variable

$$
y=\frac{2 \pi}{N^{\sigma}} x^{\sigma}
$$

designed to lead to the interval of integration $[0,2 \pi]$, we get

$$
\int_{0}^{N} e^{2 \pi i k a x^{\sigma}} d x=\frac{N}{\sigma(2 \pi)^{1 / \sigma}} \int_{0}^{2 \pi} e^{i k a N^{\sigma} y} y^{\frac{1-\sigma}{\sigma}} d y
$$

The function $y^{\frac{1-\sigma}{\sigma}}$ is in $L^{1}([0,2 \pi])$ (in fact, it is even continuous), so the last integral is the Fourier coefficient of this function evaluated at the frequency $k a N^{\sigma}$, which tends to $+\infty$ with N. By the Riemann-Lebesgue lemma this Fourier coefficient is $o(1)$ (tends to 0) so our integral divided by N is clearly $o(N)$. (Strictly speaking, the fact that the frequency $k a N^{\sigma}$ is not an integer does not allow us to call this a "Fourier coefficient", but the Riemann-Lebesgue lemma still holds, with the same proof.)

Therefore it is enough to show that

$$
\left|I_{k, N}-S_{k, N}\right|=o(N)
$$

We have

$$
\begin{aligned}
\left|I_{k, N}-S_{k, N}\right| & \leq \sum_{n=1}^{N-1}\left|\int_{n}^{n+1} f_{k}(x) d x-f_{k}(n)\right| \\
& =\sum_{n=1}^{N-1}\left|\int_{n}^{n+1}\left(f_{k}(x)-f_{k}(n)\right) d x\right| d x
\end{aligned}
$$

Using the mean value theorem on f_{k} we have

$$
f_{k}(x)-f_{k}(n)=f_{k}^{\prime}(\xi)(x-n), \text { for some } \xi \in(n, x)
$$

so

$$
\left|f_{k}(x)-f_{k}(n)\right| \leq\left|f_{k}^{\prime}(\xi)\right|=2 \pi|k a| \sigma \frac{1}{\xi^{1-\sigma}} \leq \frac{C}{n^{1-\sigma}}
$$

Substituting in the inequality above we get

$$
\left|I_{k, N}-S_{k, N}\right| \leq C \sum_{n=1}^{N-1} \frac{1}{n^{1-\sigma}}=O\left(N^{\sigma}\right)=o(N)
$$

as we had to show.

