MEM204-NUMBER THEORY

15th virtual lecture

Giorgos Kapetanakis Spring semester 2019-20 - 22/05/2020

University of Crete

ANSWERS OF THE 5TH SET

Exercise

Let $n = 2^r p_1^{n_1} \cdots p_k^{n_k}$, where $r \ge 0$ and $n_i \ge 0$, be the prime factorization of n. Further, let (a, n) = 1. Then

 $x^2 \equiv a \pmod{n}$

is solvable if and only if $x^2 \equiv a \pmod{p_i^{n_i}}$ is solvable for i = 1, ..., k and $x^2 \equiv a \pmod{2^r}$ is solvable (if $r \ge 2$).

Answer

We have that

$$\begin{aligned} x^2 \equiv a \pmod{n} & \Longleftrightarrow n \mid x^2 - a \iff p_i^{n_i} \mid x^2 - a \; \forall \, i \\ & \Longleftrightarrow x^2 \equiv a \pmod{p_i^{n_i}} \; \forall \, i. \end{aligned}$$

Let p be an odd prime, $r \ge 1$ and $p \nmid a$. Then $x^2 \equiv a \pmod{p^r}$ is solvable if and only if $x^2 \equiv a \pmod{p}$ is solvable.

First, assume that $x^2 \equiv a \pmod{p^r}$ is solvable and let b be a solution. Then

 $b^2 \equiv a \pmod{p^r} \Rightarrow p^r \mid b^2 - a \Rightarrow p \mid b^2 - a \Rightarrow b^2 \equiv a \pmod{p},$

hence $x^2 \equiv a \pmod{p}$ is solvable.

Next, assume that $x^2 \equiv a \pmod{p}$ is solvable and let b be a solution. We will show that b corresponds to a unique solution b_k of $f(x) \equiv 0 \pmod{p^k}$, for every $k \ge 1$, where $f(x) = x^2 - a$. We will use induction on k. For k = 1 the result is clear. Assume that it holds for k = m. Then, for k = m + 1, we have that $f'(b_m) = 2b_m \neq 0 \pmod{p}$, since $p \nmid 2$ and $b_m^2 \equiv a \neq 0 \pmod{p^m} \Rightarrow p \nmid b_m$. The result follows.

Let a be an odd number and $r \ge 3$. Then $x^2 \equiv a \pmod{2^r}$ is solvable if and only if $a \equiv 1 \pmod{8}$.

It is not hard to confirm the statement for r = 3. Now, assume that r > 3 and $x^2 \equiv a \pmod{2^r}$ is solvable. Then $b^2 - a \equiv 0 \pmod{2^r}$, for some *b*. We have that

$$b^2 - a \equiv 0 \pmod{2^r} \Rightarrow 2^r \mid b^2 - a \Rightarrow 8 \mid b^2 - a,$$

that is, $x^2 \equiv a \pmod{8}$ is solvable. From the r = 3 case, this means that $a \equiv 1 \pmod{8}$.

We now focus on the other direction. Namely, assume that $a \equiv 1 \pmod{8}$. We will show that $x^2 \equiv a \pmod{2^r}$ is solvable for $r \ge 3$, using induction on r. We have already commented on the r = 3 case. Assume that $x^2 \equiv a \pmod{2^k}$ is solvable, where $k \ge 3$ and let x_0 be a solution. We will show that, for a suitable y, the number $x = x_0 + y2^{k-1}$ is a solution of

$$x^2 \equiv a \pmod{2^{k+1}}.$$

The latter is equivalent to

$$x_0^2 + 2^k x_0 y + 2^{2k-2} y \equiv a \pmod{2^{k+1}}.$$

We have that $2k - 2 \ge k + 1$, for $k \ge 3$, hence $2^{2k-2} \equiv 0$ (mod 2^{k+1}). Furthermore, from the induction hypothesis, $2^k \mid x_0^2 - a$, that is $\frac{x_0^2 - a}{2^k} \in \mathbb{Z}$. We eventually get that

$$yx_0 \equiv rac{x_0^2 - a}{2^k} \pmod{2^{k+1}}.$$

Since a is odd, the same goes for x_0 , hence the above equation has a solution (for y). The result follows.

By combining the last three exercises, we get the following.

Proposition

Let $n = 2^r p_1^{n_1} \cdots p_k^{n_k}$, where $r \ge 0$ and $n_i \ge 0$, be the prime factorization of n. Further, let (a, n) = 1. Then

 $x^2 \equiv a \pmod{n}$

is solvable if and only if $\left(\frac{a}{p_i}\right) = 1$, for all $i = 1, \ldots, n$ and

$$a \equiv \begin{cases} 1 \pmod{8}, & \text{if } r \ge 3, \\ 1 \pmod{4}, & \text{if } r = 2. \end{cases}$$

Exercise 7 (items iii and iv)

Exercise

Compute the following symbols:

$$\left(\frac{100}{31}\right), \ \left(\frac{3}{23}\right).$$

Answer

$$\left(\frac{100}{31}\right) = \left(\frac{10^2}{31}\right) = \left(\frac{10}{31}\right)^2 = 1.$$
$$\left(\frac{3}{23}\right) = (-1)^{2 \cdot 22/4} \left(\frac{23}{3}\right) = (-1) \left(\frac{2}{3}\right) = (-1)(-1) = 1.$$

Exercise

Check whether $x^2 \equiv 7 \pmod{19}$ is solvable.

Answer

The above is solvable iff 7 is a quadratic residue modulo 19 and since 19 is a prime, it suffices to compute the symbol $\left(\frac{7}{19}\right)$. We have that

$$\begin{pmatrix} \frac{7}{19} \end{pmatrix} = (-1)^{6 \cdot 18/4} \begin{pmatrix} \frac{19}{7} \end{pmatrix} = -\begin{pmatrix} \frac{5}{7} \end{pmatrix}$$
$$= -\begin{pmatrix} \frac{-2}{7} \end{pmatrix} = \begin{pmatrix} \frac{2}{7} \end{pmatrix} = (-1)^{(7^2 - 1)/8} = 1,$$

thus the original congruence is solvable.

Find all the primes $10 , such that <math>p \mid n^2 + 1$, for some n.

Answer

We have that $p \mid n^2 + 1 \iff n^2 \equiv (-1) \pmod{p}$. The latter is solvable iff $\left(\frac{-1}{p}\right) = 1$, that is, iff (p - 1)/2 is even, i.e., iff $p \equiv 1 \pmod{4}$. It follows that we are looking for all the primes of the form 4k + 1, where $3 \le k \le 24$. These primes are:

13, 17, 29, 37, 41, 53, 61, 73, 89, 97.

Exercise

Let p be prime, such that $p \equiv 3 \pmod{4}$. If $a^2 + b^2 \equiv 0 \pmod{p}$, show that $a \equiv b \equiv 0 \pmod{p}$.

Answer

Assume that $a \not\equiv 0 \pmod{p}$. Then, clearly, $b \not\equiv 0 \pmod{p}$ and $a^2 \equiv -b^2 \pmod{p}$. Also, we get that

$$1 = \left(\frac{a^2}{p}\right) = \left(\frac{-b^2}{p}\right) = \left(\frac{-1}{p}\right)\left(\frac{b^2}{p}\right) = \left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}.$$

The latter implies that (p - 1)/2 is even, i.e., that $p \equiv 1 \pmod{4}$, a contradiction. It follows that $a \equiv 0 \pmod{p}$, which in turn implies $b \equiv 0 \pmod{p}$.

Stay safe!