MEM204-NuMber Theory

15th virtual lecture

Giorgos Kapetanakis
Spring semester 2019-20-22/05/2020
University of Crete

Answers of the 5th set

Exercise 2

Exercise

Let $n=2^{r} p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}$, where $r \geq 0$ and $n_{i} \geq 0$, be the prime factorization of n. Further, let $(a, n)=1$. Then

$$
x^{2} \equiv a \quad(\bmod n)
$$

is solvable if and only if $x^{2} \equiv a\left(\bmod p_{i}^{n_{i}}\right)$ is solvable for $i=1, \ldots, k$ and $x^{2} \equiv a\left(\bmod 2^{r}\right)$ is solvable (if $\left.r \geq 2\right)$.

Answer

We have that

$$
\begin{aligned}
x^{2} \equiv a \quad(\bmod n) \Longleftrightarrow n \mid x^{2}-a & \Longleftrightarrow p_{i}^{n_{i}} \mid x^{2}-a \forall i \\
& \Longleftrightarrow x^{2} \equiv a\left(\bmod p_{i}^{n_{i}}\right) \forall i .
\end{aligned}
$$

Exercise 3

Exercise

Let p be an odd prime, $r \geq 1$ and $p \nmid a$. Then $x^{2} \equiv a\left(\bmod p^{r}\right)$ is solvable if and only if $x^{2} \equiv a(\bmod p)$ is solvable.

Exercise 3

First, assume that $x^{2} \equiv a\left(\bmod p^{r}\right)$ is solvable and let b be a solution. Then
$b^{2} \equiv a \quad\left(\bmod p^{r}\right) \Rightarrow p^{r}\left|b^{2}-a \Rightarrow p\right| b^{2}-a \Rightarrow b^{2} \equiv a \quad(\bmod p)$,
hence $x^{2} \equiv a(\bmod p)$ is solvable.
Next, assume that $x^{2} \equiv a(\bmod p)$ is solvable and let b be a solution. We will show that b corresponds to a unique solution b_{k} of $f(x) \equiv 0\left(\bmod p^{k}\right)$, for every $k \geq 1$, where $f(x)=x^{2}-a$. We will use induction on k. For $k=1$ the result is clear. Assume that it holds for $k=m$. Then, for $k=m+1$, we have that $f^{\prime}\left(b_{m}\right)=2 b_{m} \not \equiv 0(\bmod p)$, since $p \nmid 2$ and $b_{m}^{2} \equiv a \not \equiv 0\left(\bmod p^{m}\right) \Rightarrow p \nmid b_{m}$. The result follows.

Exercise 4

Exercise

Let a be an odd number and $r \geq 3$. Then $x^{2} \equiv a\left(\bmod 2^{r}\right)$ is solvable if and only if $a \equiv 1(\bmod 8)$.

Exercise 4

It is not hard to confirm the statement for $r=3$. Now, assume that $r>3$ and $x^{2} \equiv a\left(\bmod 2^{r}\right)$ is solvable. Then $b^{2}-a \equiv 0$ $\left(\bmod 2^{r}\right)$, for some b. We have that

$$
b^{2}-a \equiv 0 \quad\left(\bmod 2^{r}\right) \Rightarrow 2^{r}\left|b^{2}-a \Rightarrow 8\right| b^{2}-a
$$

that is, $x^{2} \equiv a(\bmod 8)$ is solvable. From the $r=3$ case, this means that $a \equiv 1(\bmod 8)$.

We now focus on the other direction. Namely, assume that $a \equiv 1(\bmod 8)$. We will show that $x^{2} \equiv a\left(\bmod 2^{r}\right)$ is solvable for $r \geq 3$, using induction on r. We have already commented on the $r=3$ case. Assume that $x^{2} \equiv a\left(\bmod 2^{k}\right)$ is solvable, where $k \geq 3$ and let x_{0} be a solution. We will show that, for a suitable y, the number $x=x_{0}+y 2^{k-1}$ is a solution of

$$
x^{2} \equiv a \quad\left(\bmod 2^{k+1}\right)
$$

Exercise 4

The latter is equivalent to

$$
x_{0}^{2}+2^{k} x_{0} y+2^{2 k-2} y \equiv a \quad\left(\bmod 2^{k+1}\right)
$$

We have that $2 k-2 \geq k+1$, for $k \geq 3$, hence $2^{2 k-2} \equiv 0$ $\left(\bmod 2^{k+1}\right)$. Furthermore, from the induction hypothesis, $2^{k} \mid x_{0}^{2}-a$, that is $\frac{x_{0}^{2}-a}{2^{k}} \in \mathbb{Z}$. We eventually get that

$$
y x_{0} \equiv \frac{x_{0}^{2}-a}{2^{k}} \quad\left(\bmod 2^{k+1}\right)
$$

Since a is odd, the same goes for x_{0}, hence the above equation has a solution (for y). The result follows.

Exercise 5 - a characterization

By combining the last three exercises, we get the following.

Proposition

Let $n=2^{r} p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}$, where $r \geq 0$ and $n_{i} \geq 0$, be the prime factorization of n. Further, let $(a, n)=1$. Then

$$
x^{2} \equiv a \quad(\bmod n)
$$

is solvable if and only if $\left(\frac{a}{p_{i}}\right)=1$, for all $i=1, \ldots, n$ and

$$
a \equiv\left\{\begin{array}{lll}
1 & (\bmod 8), & \text { if } r \geq 3, \\
1 & (\bmod 4), & \text { if } r=2
\end{array}\right.
$$

Exercise 7 (items iii and iv)

Exercise

Compute the following symbols:

$$
\left(\frac{100}{31}\right),\left(\frac{3}{23}\right) .
$$

Answer

$$
\begin{gathered}
\left(\frac{100}{31}\right)=\left(\frac{10^{2}}{31}\right)=\left(\frac{10}{31}\right)^{2}=1 . \\
\left(\frac{3}{23}\right)=(-1)^{2 \cdot 22 / 4}\left(\frac{23}{3}\right)=(-1)\left(\frac{2}{3}\right)=(-1)(-1)=1 .
\end{gathered}
$$

Exercise 9

Exercise

Check whether $x^{2} \equiv 7(\bmod 19)$ is solvable.

Answer

The above is solvable iff 7 is a quadratic residue modulo 19 and since 19 is a prime, it suffices to compute the symbol $\left(\frac{7}{19}\right)$. We have that

$$
\begin{aligned}
\left(\frac{7}{19}\right) & =(-1)^{6 \cdot 18 / 4}\left(\frac{19}{7}\right)=-\left(\frac{5}{7}\right) \\
& =-\left(\frac{-2}{7}\right)=\left(\frac{2}{7}\right)=(-1)^{\left(7^{2}-1\right) / 8}=1,
\end{aligned}
$$

thus the original congruence is solvable.

Exercise 10

Exercise

Find all the primes $10<p<100$, such that $p \mid n^{2}+1$, for some n.

Answer

We have that $p \mid n^{2}+1 \Longleftrightarrow n^{2} \equiv(-1)(\bmod p)$. The latter is solvable iff $\left(\frac{-1}{p}\right)=1$, that is, iff $(p-1) / 2$ is even, i.e., iff $p \equiv 1$ (mod 4). It follows that we are looking for all the primes of the form $4 k+1$, where $3 \leq k \leq 24$. These primes are:

$$
\text { 13, 17, 29, 37, 41, 53, 61, 73, 89, } 97 .
$$

Exercise 11

Exercise

Let p be prime, such that $p \equiv 3(\bmod 4)$. If $a^{2}+b^{2} \equiv 0$ $(\bmod p)$, show that $a \equiv b \equiv 0(\bmod p)$.

Answer

Assume that $a \not \equiv 0(\bmod p)$. Then, clearly, $b \not \equiv 0(\bmod p)$ and $a^{2} \equiv-b^{2}(\bmod p)$. Also, we get that

$$
1=\left(\frac{a^{2}}{p}\right)=\left(\frac{-b^{2}}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{b^{2}}{p}\right)=\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2} .
$$

The latter implies that $(p-1) / 2$ is even, i.e., that $p \equiv 1$ $(\bmod 4)$, a contradiction. It follows that $a \equiv 0(\bmod p)$, which in turn implies $b \equiv 0(\bmod p)$.

Stay safe!

