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DIOPHANTINE EQUATIONS



Introduction

Let f(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a polynomial of n variables
with integer coefficients. An equation of the form

f(x1, . . . , xn) = 0

is called a Diophantine equation. They are named after
Diophantus of Alexandria, who extensively studied such
equations.

In principle, we are interested in whether one such equation
has integer solutions (i.e. (x1, . . . , xn) ∈ Zn that satisfy the
equation) or not and, in the former case, identify them.
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A historical note

In 1900, David Hilbert conjectured the existence of an
algorithm that would solve any Diophantine equation. This
conjecture is known as Hilbert’s 10th problem.

It would take 70 years for mathematicians to prove Hilbert
wrong. Namely, in 1970, Yuri Matiyasevich, in his doctoral
thesis proved that the conjecture is false. Amid the cold war,
the Soviet mathematician, proudly acknowledged that his
proof relied on previous works of the American
mathematicians Julia Robinson, Martin Davis and Hilary
Putnam.

The coresponding theorem is known as the MRDP theorem or
Matiyasevich’s theorem.
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An example

We will identify the integer and rational solutions of

2x3 + xy− 7 = 0.

Clearly, x ̸= 0, hence the above can be rewritten as

y =
−2x3 + 7

x .

Hence, the rational solutions are of the form (x, (−2x3 + 7)/x),
where x ∈ Q \ {0}. It follows that the integer solutions are
those where x ∈ Z \ {0} and x | (−2x3 + 7). The latter is true if
and only if x | 7.

It follows that the integer solutions are (1, 5), (−1,−9),
(7,−97) and (−7,−99).
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Another example

We will now study the integer solutions of the equation

15x2 − 7y2 = 9.

Let (x, y) be an integer solution of the above. Then

−7y2 ≡ 9 (mod 5) ⇒ y2 ≡ 3 (mod 5).

However, the latter is impossible, since
(3
5
)
= −1. It follows

that there are no integer solutions of this equation.
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LINEAR DIOPHANTINE EQUATIONS



An existence criterion

A linear Diophantine equation is an equation of the form
f(x1, . . . , xn) = 0, where f ∈ Z[x1, . . . , xn] and deg(f) = 1. The
following criterion fully characterizes the existence of integer
solutions of such equations.

Proposition
Let a1, . . . ,an,b ∈ Z, ai ̸= 0 for i = 1, . . . ,n. If d = (a1, . . . ,an),
then the equation

a1x1 + · · ·+ anxn = b

has an integer solution if and only if d | b.
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Proof

For every i, d | ai, hence there exists some ci, such that
ai = dci. Now, assume that the equation has an integer
solution (x1, . . . , xn). Then

a1x1 + · · ·+ anxn = b ⇒ d(c1x1 + · · ·+ cnxn) = b,

that is d | b.

Conversely, assume that d | b. Then b = dc for some c.
Further, there exist c1, . . . , cn, such that d = c1a1 + · · ·+ cnan.
By multiplying both sides by c, we get

b = a1x1 + · · ·+ anxn,

where xi = cic. The result follows.
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Two variables

Proposition
Let a,b, c ∈ Z, a,b ̸= 0. If (x0, y0) is an integer solution of

ax+ by = c (1)

and d = (a,b), then all the solutions of (1) are given by the
relations

x = x0 +
b
dt, y = y0 −

a
dt, t ∈ Z.
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Proof

Since d = (a,b), there exist a′,b′, such that a = da′ and
b = db′ and (a′,b′) = 1. First, we will show that

x = x0 + b′t, y = y0 − a′t, t ∈ Z

are solutions of (1). Indeed, we have that

ax+by = a(x0+b′t)+b(y0−a′t) = ax0+by0+ t(ab′−ba′) = c,

since ab′ = ba′.
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Proof

Now, let (x′, y′) be an integer solution of (1). Then

ax0 + by0 = c = ax′ + by′ ⇒ a(x0 − x′) = b(y′ − y0),

that is,
a′(x0 − x′) = b′(y′ − y0).

Hence, a′ | b′(y′ − y0)
(a′,b′)=1
=⇒ a′ | y′ − y0. It follows that

y′ = y0 + a′t and x′ = x0 − b′t, for some t.
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A method for two variables

From the last proposition, we get that, in order to completely
solve a linear Diophantine equation, it suffices to find a
special solution and from this build the whole set of
solutions. Let us now demonstrate that method with an
example.
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An example

Example
Find all the integer solutions of

221x+ 340y = 51.
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An example

First, we employ the Euclidean algorithm and (from its first
part) we get (221, 340) = 17. Since 17 | 51, we know that the
equation has integer solutions.

Next, from the second part of the Euclidean algorithm, we find
that

17 = 2 · 340− 3 · 221.
We multiply the above equation by 3 (because 51/17 = 3) and
get:

51 = 221(−9) + 340 · 6,
in other words, (−9, 6) is a solution. It follows that all the
solutions are

x = −9+ 20t, y = 6− 13t, t ∈ Z.
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Multiple variables

We conclude this lecture with an example that demonstrates
how the two-variable method can be generalized to more
than two variables. Our example has three variables, but its
method can be easily extended to any number of variables.

Example
Find all the integer solutions of

6x+ 4y+ 8z = 2.
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Multiple variables

First, notice that (6, 4, 8) = 2 | 2, hence the equation has
integer solutions. Then, set w = 3x+ 2y (in general, we take
the co-prime parts of the coefficients of x and y, so, here, we
have (6, 4) = 2 and we take 3 = 6/2 and 2 = 4/2 respectively).
Now, the original equation becomes

2w+ 8z = 2.

By using the method for two-variable linear Diophantine
equations described earlier, we find that all the solutions of
the above are given by

w = 5+ 4t, z = −1− t, t ∈ Z.
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Multiple variables

Now, it remains to solve

3x+ 2y = 5+ 4t.

Again, the two-variable method yields the solutions

x = (5+ 4t) + 2s, y = −(5+ 4t)− 3s, s ∈ Z.

It follows that the whole set of solutions of the original
equation are given by

x = 5+ 4t+ 2s, y = −5− 4t− 3s, z = −1− t, s, t ∈ Z.
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Stay safe!
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