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PRIMITIVE ROOTS



Introduction

Recall that, if (a,n) = 1, the order (τάξη) of a modulo n is
defined as the smallest positive exponent x, such that

ax ≡ 1 (mod n),

and it is denoted by ordn(a). Further, we have seen that
ordn(a) | φ(n). Today, we will study the elements with order
φ(n).

Definition
Let a and n > 1 be such that (a,n) = 1. Then a is called a
primitive root modulo n (πρωταρχική ρίζα modulo n) if
ordn(a) = φ(n).
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Introduction

A natural question is whether primitive roots modulo n exist
and, if yes, how many of them are there?

Remark
For the remaining lecture, we will assume that a ∈ Z and
n ∈ Z>1 and (a,n) = 1.
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Some basics

Proposition
The integer a is a primitive root modulo n iff
{1,a,a2, . . . ,aφ(n)−1} is a reduced set of representatives
modulo n.

Proof.
Let a be primitive (mod n). Then 1,a,a2, . . . ,aφ(n)−1 are
distinct (mod n) (why?). Hence, they form a subset of Z∗

n of
cardinality φ(n) and the result follows.

Conversely, assume that {1,a,a2, . . . ,aφ(n)−1} is a reduced
set of representatives (mod n). Then aφ(n) ≡ 1 (mod n),
while ad ̸≡ 1 (mod n) for all 1 ≤ d < φ(n). The result
follows.
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Powers of 2

Proposition
If n = 2m, m ≥ 3, then aφ(n)/2 ≡ 1 (mod n).

Proof.
We will use induction on m. Since (a,n) = 1, a is odd, i.e.
a = 2b+ 1 for some b. Now, for m = 3 we have:

aφ(n)/2 ≡ (2b+ 1)2 ≡ 4b(b+ 1) + 1 ≡ 1 (mod 8),

since b(b+ 1) is even for every b.

Next, assume that aφ(2k)/2 ≡ 1 (mod 2k) ⇐⇒ a2k−2
= 2kt+ 1,

for some t. Finally, we have

aφ(2k+1)/2 ≡ (a2k−2
)2 ≡ 22kt2 + 2k+1t+ 1 ≡ 1 (mod 2k+1).
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Powers of 2

The above, combined with the facts that 1 is a primitive root
modulo 2 and that 3 is a primitive root modulo 4, yield the
following.

Proposition
There are primitive roots modulo 2m if and only if m = 1 or 2.
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Another non-existence result

Proposition
Let n = rs, with (r, s) = 1 and r, s > 2. Then aφ(n)/2 ≡ 1
(mod n).

Proof.
Since (a, r) = 1, we have that aφ(r) ≡ 1 (mod r). The facts
that r and s are co-prime and that φ is multiplicative yield
φ(n) = φ(r)φ(s). It follows that

aφ(n)/2 ≡ (aφ(r))φ(s)/2 ≡ 1 (mod r).

Similarly, we get aφ(n)/2 ≡ 1 (mod s) and the result follows
from the Chinese Remainder Theorem.
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Another non-existence result

Corollary
Let n = rs, with (r, s) = 1 and r, s > 2. Then there are no
primitive roots modulo n.

The non-existence results we have seen so far cover all the
numbers, except

2, 4,pr, 2pr,

where p is an odd prime and r ≥ 1.

Our next step is to prove that in these cases, the existence of
primitive roots is ensured.
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An auxiliary lemma (from Group Theory)

Lemma
Let k ≥ 1. Then ordn(ak) = ordn(a)

gcd(ordn(a),k) .

Proof.
Set r = ordn(a) and d = gcd(r, k). Then r = df and k = de, for
some co-prime numbers e and f. Thus

(ak)f ≡ aer ≡ (ar)e ≡ 1 (mod n).

Further, m ≥ 1 is such that (ak)m ≡ 1 (mod n), iff r | km, that
is, iff f | me. Since (f, e) = 1 the latter is equivalent to f | m
and the result follows.
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Odd primes

Proposition
Let p be an odd prime and d | p− 1. Then there are exactly
φ(d) elements of Zp of order d.

Proof.
Presented in the next slides.

Corollary
Let p be an odd prime. There are exactly φ(p− 1) primitive
roots modulo p.
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Proof of the proposition

Let ψ(d) be the number of elements of Zp with order d.
Suppose that ψ(d) ̸= 0. We will show that, in that case,
ψ(d) = φ(d). Since ψ(d) ̸= 0, there exists some a, such that
ordp(a) = d. This means that the numbers 1,a, . . . ,ad−1 are
non-congruent modulo p. Moreover, these numbers satisfy

xd − 1 ≡ 0 (mod p),

which has at most d solutions modulo p. In other words, they
are exactly the solutions of the above congruence. It follows
that the elements of Zp of order d are found among them.
From the last lemma, we get that
ordp(ak) = ordp(a)/ gcd(ordp(a), k), that is
ordp(ak) = d ⇐⇒ (k,d) = 1. The result follows from the fact
that there are exactly φ(d) exponents with this property.
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Proof of the proposition

Moreover, by definition, one gets
∑

d|p−1ψ(d) = p− 1. We also
have that

∑
d|p−1φ(d) = p− 1, that is,∑

d|p−1
ψ(d) =

∑
d|p−1

φ(d),

which combined with the fact that, for every d | p− 1,
ψ(d) ≤ φ(d), yields

ψ(d) = φ(d),

for every d | p− 1. The proof is now complete.
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A related open problem and active research

Although, the results we saw earlier, not only ensure the
existence of primitive roots modulo p, for every prime p, but
also imply the number of such roots, we do not yet have an
effective (in computer terms) way of finding one such root,
when p is large.

A problem that has recently started attracting attention, is the
construction of almost primitive roots (i.e., high-order
elements).
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pr and 2pr where p is an odd prime

Proposition
Let p be an odd prime and let r ≥ 1. Then there are primitive
roots modulo pr and 2pr.

We will first prove the above for pr and then, based on this,
for 2pr.
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Proof of the case n = pr

Let a be a primitive root (mod p). Then ap−1 ≡ 1 (mod p),
i.e., ap−1 = 1+ yp, for some y. First, we will show that there
exists some b ≡ a (mod p), such that

bpj−1(p−1) = 1+ pjzj, where p ∤ zj,

for all j ≥ 1. We will use induction on j.

For j = 1, Let b = a+ px. Then

bp−1 = (a+ px)p−1 = 1+ py+
p−2∑
k=1

(
p− 1
k

)
ak(px)p−1−k.

Hence, bp−1 = 1+ pz1, where z1 ≡ y+ (p− 1)ap−2x (mod p).
Since p ∤ (p− 1)ap−2, we may choose x, such that p ∤ z1 and the
result follows.
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Proof of the case n = pr

Next, assume that the statement holds for j = m. Then for
j = m+ 1, we get

bpm(p−1) I.H.
= (1+ pmzm)p =

p∑
k=0

(
p
k

)
(pmzm)k = 1+ pm+1zm+1,

where

zm+1 = zm +

p∑
k=2

zkmpm(k−1)−1.

Since p ∤ zm, but p divides every other term of the above sum,
we obtain p ∤ zm+1. The induction is now complete.

Set d = ordpr(b). Then d | φ(pr) = pr−1(p− 1). Moreover, b is
primitive modulo p and bd ≡ 1 (mod p), hence p− 1 | d, that
is, d = (p− 1)c for some c, hence (p− 1)c | pr−1(p− 1), i.e.,
c | pr−1, hence c = ps, for s ≤ r− 1, i.e., d = (p− 1)ps.
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Proof of the case n = pr

Our proof will be complete once we show that, above,
s = r− 1. The induction argument proved that

bps(p−1) = 1+ ps+1zs+1, where p ∤ zs+1.

Since ordpr(b) = (p− 1)ps,

bps(p−1) = 1+ prz,

for some z. So, if s < r− 1, we obtain p | zs+1, a contradiction.

The case n = pr is now settled.
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Proof of the case n = 2pr

We continue with the case n = 2pr. Let b be a primitive root
(mod pr). Then b+ pr is also primitive (mod pr) and (since pr
is odd) one of these numbers is odd. Let g be the odd number
among them. Then (g, 2pr) = 1. Set d = ord2pr(g) = d. Then,
clearly, d | φ(2pr) = φ(pr).

Moreover, gd ≡ 1 (mod pr) and ordpr(g) = φ(pr), that is,
φ(pr) | d. It follows that d = φ(pr) = φ(2pr), that is, g is
primitive (mod 2pr).
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Cardinality of primitive roots

Proposition
If a is primitive modulo n, then ak is primitive modulo n if
and only if (φ(n), k) = 1. Moreover, if Zn contains one
primitive root, it contains a total of φ(φ(n)) primitive roots,
given by the above rule.

Proof.
Exercise
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Synopsis

To sum up, in this lecture we proved the following.

Theorem
Let n > 1. Then there exist primitive roots modulo n if and
only if

n = 2, 4,pm, 2pm,

where p is an odd prime and m ≥ 1. In this case, there exist
exactly φ(φ(n)) primitive roots modulo n and if a is one of
them, the other are congruent (modulo n) to ak, for some
1 ≤ k ≤ φ(n), with (k,φ(n)) = 1.
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Stay home, stay safe!
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