## MEM204-NuMBER THEORY

## 9th virtual lecture

Giorgos Kapetanakis
Spring semester 2019-20-01/05/2020
University of Crete

## ANSWERS OF THE 4TH SET

## Exercise 1.2

## Exercise

Solve $7 x \equiv 8(\bmod 30)$.

We will solve this congruence using Euler's theorem. Since $(7,30)=1$, Euler's theorem implies that

$$
7^{\varphi(30)} \equiv 1 \quad(\bmod 30) \Rightarrow 7^{-1} \equiv 7^{\varphi(30)-1} \equiv 7^{7} \quad(\bmod 30),
$$

since $\varphi(30)=8$. We will now demonstrate an effective way for computing large powers.

## Exercise 1.2

1. Write the exponent as a sum of powers of 2 (i.e., write it in binary). Here, $7=1+2+4$.
2. Compute the corresponding powers of the base (of course modulo the modulus), by constantly raising to the square. Here:

$$
\begin{aligned}
& 7^{1} \equiv 7 \quad(\bmod 30) \\
& 7^{2} \equiv 49 \equiv 19 \quad(\bmod 30) \\
& 7^{4} \equiv\left(7^{2}\right)^{2} \equiv 19^{2} \equiv 361 \equiv 1 \quad(\bmod 30) .
\end{aligned}
$$

3. Multiply the corresponding powers as follows:

$$
7^{-1} \equiv 7^{7} \equiv 7^{1} 7^{2} 7^{4} \equiv 7 \cdot 19 \cdot 1 \equiv 133 \equiv 13 \quad(\bmod 30) .
$$

It follows that $7 x \equiv 8(\bmod 30) \Longleftrightarrow x \equiv 8 \cdot 13 \equiv 104 \equiv 14$ $(\bmod 30)$.

## Exercise 2

## Exercise

A salesman is visiting a town every 5 months. Will he ever visit the town on March?

## Answer

We label each month with its corresponding number, i.e., 3 stands for March. Assume that the first visit of the salesman to the city occurred on the month labeled $a$. The second visit will occur on the month labeled $a+5(\bmod 12)$. The third on the month $a+2 \cdot 5(\bmod 12)$ and so on.

Hence the question translates to whether there exists an $x$, such that $a+5 x \equiv 3(\bmod 12)$. This is equivalent to $5 x \equiv(3-a)(\bmod 12)$, which has a unique solution $(\bmod 12)($ regardless $a)$, since $(5,12)=1$.

## Exercise 4

## Exercise (Brahmagupta)

A basket is full of eggs. When the eggs are taken out of a basket 2, 3, 4, 5, 6, 7 at a time, the remainders are 1, 2, 3, 4, 5 and 0 respectively. How many eggs were in the basket?

Let $x$ be the number of eggs in the basket. From the statement we get that

$$
\begin{cases}x \equiv 1 & (\bmod 2), \\ x \equiv 2 & (\bmod 3), \\ x \equiv 3 & (\bmod 4), \\ x \equiv 4 & (\bmod 5), \\ x \equiv 5 & (\bmod 6), \\ x \equiv 0 & (\bmod 7) .\end{cases}
$$

## Exercise 4

The third congruence implies the first and the fifth implies the second. Hence, the system can be simplified as

$$
\left\{\begin{array}{l}
x \equiv 3 \quad(\bmod 4) \\
x \equiv 4 \quad(\bmod 5) \\
x \equiv 5 \quad(\bmod 6) \\
x \equiv 0 \quad(\bmod 7)
\end{array}\right.
$$

Now, notice that for each pair of the above congruences, the gcd of the moduluses divides the corresponding difference of factors, hence the system has a unique solution molulo $\operatorname{lcm}(4,5,6,7)=420$.

## Exercise 4

We easily check that the systems

$$
\left\{\begin{array} { l } 
{ x \equiv 3 \quad ( \operatorname { m o d } 4 ) , } \\
{ x \equiv 5 \quad ( \operatorname { m o d } 6 ) , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
x \equiv 4 & (\bmod 5) \\
x \equiv 0 & (\bmod 7)
\end{array}\right.\right.
$$

are equivalent to $x \equiv 11(\bmod 12)$ and $x \equiv 14(\bmod 35)$
respectively.
From the above, the original system is reduced to

$$
\left\{\begin{array}{l}
x \equiv 11 \quad(\bmod 12) \\
x \equiv 14 \quad(\bmod 35)
\end{array}\right.
$$

whose unique solution is $x \equiv 119(\bmod 420)$. It follows that the basket contains $119+420 k$ eggs, for some $k \geq 0$.

## Exercise 6

## Exercise

On a 12-hour clock, we put a blue marble on position 1 and a red marble on position 2. Every hour we move the blue marble by 3 positions and the red marble by 1 . Will the two marbles ever meet?

## Answer

After $x$ hours, the blue marble will be on the position $1+3 x$ $(\bmod 12)$, while the red one on the position $2+x(\bmod 12)$. Hence, the two marbles will meet if, for some $x$,

$$
1+3 x \equiv 2+x \quad(\bmod 12) \Longleftrightarrow 2 x \equiv 1 \quad(\bmod 12) .
$$

However, since $(2,12)=2 \nmid 1$, the above congruence is not solvable.

## Exercise 7

## Exercise

Find a congruence equivalent with the system

$$
\left\{\begin{array}{l}
x \equiv 1 \quad(\bmod 4) \\
x \equiv 2 \quad(\bmod 3)
\end{array}\right.
$$

Since $(3,4)=1$, the Chinese Remainder Theorem implies that the above has a unique solution modulo 12. The first congruence implies that

$$
x=1+4 k, k \in \mathbb{Z}
$$

## Exercise 7

Now, the second one yields

$$
1+4 k \equiv 2 \quad(\bmod 3) \Rightarrow k \equiv 1 \quad(\bmod 3) \Rightarrow k=1+3 \ell, \ell \in \mathbb{Z}
$$

It follows that

$$
x=1+4(1+3 \ell)=5+12 \ell, \ell \in \mathbb{Z}
$$

It follows that the solution is $x \equiv 5(\bmod 12)$.

## Exercise 8

## Exercise

Solve $x^{3}+4 x+8 \equiv 0(\bmod 15)$.

## Answer

Let $f(x)=x^{3}+4 x+8$. Since $15=3 \cdot 5$, The congruence $f(x) \equiv 0(\bmod 15)$ is solvable iff the congruences $f(x) \equiv 0$ $(\bmod 3)$ and $f(x) \equiv 0(\bmod 5)$ are solvable.
We focus on $f(x) \equiv 0(\bmod 5)$. This is equal to

$$
x^{3}-x-2 \equiv 0 \quad(\bmod 5) .
$$

We check all the values $x=0, \pm 1, \pm 2$ and verify that none is a solution, that is, the congruence is not solvable. We conclude that the congruence $f(x) \equiv 0(\bmod 15)$ is also not solvable.

## A FEW MORE EXERCISES

## A polynomial congruence modulo a prime power

## Exercise

Let $p$ be a prime and $m \in \mathbb{Z}_{>0}$. Prove that the congruence

$$
x^{m} \equiv 0 \quad\left(\bmod p^{m}\right)
$$

has exactly $p^{m-1}$ solutions.
We will use induction on $m$. The statement is clear for $m=1$ $(x \equiv 0(\bmod p)$ is the sole solution).
Assume that $x^{k} \equiv 0\left(\bmod p^{k}\right)$ has exactly $p^{k-1}$ solutions. Let $f(x)=x^{k+1}$. In order to complete the proof, i.e., show that $f(x) \equiv 0\left(\bmod p^{k+1}\right)$ has $p^{k}$ solutions, it suffices to prove two facts:

## A polynomial congruence modulo a prime power

1. The solutions of $f(x) \equiv 0\left(\bmod p^{k}\right)$ concide with the solutions of $x^{k} \equiv 0\left(\bmod p^{k}\right)$ (hence there are $p^{k-1}$ of them from the induction hypothesis).
2. If $b$ is one of those solutions, then $f^{\prime}(b) \equiv f(b) \equiv 0$ $\left(\bmod p^{k+1}\right)$ (hence each of them corresponds to $p$ solutions of $f(x) \equiv 0\left(\bmod p^{k+1}\right)$ ).

## A polynomial congruence modulo a prime power

Let $v_{p}(b)$ stand for the exponent of $p$ in the prime factorization of $b$. Then, if $f(b) \equiv 0\left(\bmod p^{k}\right)$, we get that

$$
\begin{equation*}
p^{k}\left|b^{k+1} \Longleftrightarrow v_{p}\left(b^{k+1}\right) \geq k \Longleftrightarrow v_{p}(b) \geq 1 \Longleftrightarrow p^{\ell}\right| b^{\ell}, \tag{1}
\end{equation*}
$$

for all $\ell \geq 1$.
Equation (1), for $\ell=k$, implies the first item of the previous slide.

Equation (1), for $\ell=k$ and $\ell=k+1$, implies the second item of the previous slide.

## Stay home, stay safe!

