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THE JACOBI SYMBOL



Definition

Let n > 1 be an odd integer and let

n = pn1
1 · · ·pnk

k

be its prime factorization. Then, if a ∈ Z is such that (a,n) = 1,
the Jacobi symbol (σύμβολο Jacobi) of a modulo n is(

a
n

)
=

(
a
p1

)n1
· · ·

(
a
pk

)nk

,

where
(a
pi

)
stands for the Legendre symbol of a modulo pi

(i = 1, . . . , k).
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Some facts

• Clearly,
(a
n
)
∈ {±1}.

• If n is an odd prime, then the Jacobi symbol
(a
n
)
coincides

with the Legendre symbol
(a
n
)
. This means that the Jacobi

symbol generalizes the Legendre symbol.
• As we will see today, the two symbols share even more
properties.
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Some facts

Remark
Some times in the literature, both the Legendre and the
Jacobi symbols are defined without the restriction (a,n) = 1.
In this case, by definition,

(a
n
)
= 0.

Remark
As we will see in more detail in the upcoming exercise set, if(a
n
)
= −1, then a is not a quadratic residue modulo n.

However, the inverse is not true.
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Basic properties

Proposition
Let m,n > 1 be odd numbers and a,b ∈ Z be co-prime to
both m and n. Then the following hold:

1.
(ab
n
)
=

(a
n
)(b

n
)
.

2.
( a
mn

)
=

(a
m
)(a

n
)
.

3. a ≡ b (mod n) ⇒
(a
n
)
=

(b
n
)
.

4.
(a2
n
)
= 1.
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Proof

Assume that n = pn1
1 · · ·pnk

k and m = pm1
1 · · ·pmk

k (ni,mi ≥ 0).

1.
(ab
n
)
=

(ab
p1
)n1 · · · (abpk

)nk =
( a
p1
)n1 · · · ( a

pk

)nk
( b
p1
)n1 · · · ( b

pk

)nk =(a
n
)(b

n
)
.

2.
( a
mn

)
=

( a
p1
)m1+n1 · · ·

( a
pk

)mk+nk =( a
p1
)m1 · · ·

( a
pk

)mk
( a
p1
)n1 · · · ( a

pk

)nk =
(a
m
)(a

n
)
.

3. Let a ≡ b (mod n). Then, clearly, a ≡ b (mod pi) for
every i. Hence(a
n
)
=

( a
p1
)n1 · · · ( a

pk

)nk =
( b
p1
)n1 · · · ( b

pk

)nk =
(b
n
)
.

4.
(a2
n
)
=

(a2
p1
)n1 · · · (a2pk

)nk
= 1.
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The Jacobi symbol of -1 and 2

Proposition
Let n be an odd number. Then(

−1
n

)
= (−1)(n−1)/2

and (
2
n

)
= (−1)(n2−1)/8.
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Proof

Assume that n = p1 · · ·pk, where the numbers p1, . . . ,pk are
(not necessarily distinct) odd primes. Then(

−1
n

)
=

(
−1
p1

)
· · ·

(
−1
pk

)
= (−1)

p1−1
2 · · · (−1)

pk−1
2 = (−1)P,

where P =
∑k

i=1
pi−1
2 . Thus it suffices to show that

P ≡ (n− 1)/2 (mod 2).

The above follows from the fact that, if p,q are odd primes,

(p− 1)(q− 1) ≡ 0 (mod 4) ⇒ pq− 1 ≡ p+ q− 2 (mod 4),

that is,
pq− 1
2 ≡ p− 1

2 +
q− 1
2 (mod 2).
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Proof (cont.)

Similarly,(
2
n

)
=

(
2
p1

)
· · ·

(
2
pk

)
= (−1)

p21−1
8 · · · (−1)

p2k−1
8 = (−1)Q,

where Q =
∑k

i=1
p2i −1
8 . Thus it suffices to show that

Q ≡ (n2 − 1)/8 (mod 2).

The above follows from the fact that, if p,q are odd primes,
then p2 ≡ q2 ≡ 1 (mod 8), hence

(p2−1)(q2−1) ≡ 0 (mod 64) ⇒ (pq)2−1 ≡ p2+q2−2 (mod 64),

that is,
(pq)2 − 1

8 ≡ p2 − 1
8 +

q2 − 1
8 (mod 8).
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The Quadratic Reciprocity Law

Theorem (The quadratic reciprocity law for the Jacobi
symbol)
Let m,n > 1 be odd, co-prime numbers. Then(

m
n

)(
n
m

)
= (−1)

(m−1)(n−1)
4 .

Proof.
Omitted.
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A FEW EXAMPLES AND APPLICATIONS



An interesting application

Theorem
Let a ∈ Z. Then (

a
p

)
= 1,

for all odd primes p, if and only if a = b2, for some b ∈ Z.

Proof. If a = b2, for some b, then clearly for every odd prime
p,

(a
p
)
=

(b2
p
)
= 1. Now assume that a ̸= b2, for all b ∈ Z. It

suffices to show that there exists some positive odd number
P, such that

(a
P
)
= −1, since, in this case, there exists a prime

factor p of P, with
(a
p
)
= −1. We distinguich three cases:
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Proof (cont.)

If a = ±2kb, where k,b are odd positive numbers. The Chinese
Remainder Theorem implies that there exists some P, with

P ≡ 5 (mod 8) and P ≡ 1 (mod b).

It follows that 4 | P− 1, which combined with the fact that
b− 1 is even, yields that (P−1)(b−1)

4 is even. Now the quadratic
reciprocity law yields(

b
P

)
=

(
P
b

)
=

(
1
b

)
= 1.

Moreover, P ≡ 5 (mod 8), implies
(−1
P
)
= 1 and

(2
P
)
= −1.

Hence, (
a
P

)
=

(
±1
P

)(
2
P

)k(b
P

)
= 1 · (−1)k · 1 = −1.
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Proof (cont.)

If a = ±22hqkb, where q is an odd prime and k,b are odd
numbers and q ∤ b. The Chinese Remainder Theorem implies
that there exists some P, with

P ≡ 1 (mod 4) ,P ≡ 1 (mod b) and P ≡ c (mod q),

where c is a non-quadratic residue modulo q. It follows that
4 | P− 1, which combined with the fact that b− 1 is even,
yields that (P−1)(b−1)

4 is even. Now the quadratic reciprocity
law yields (

b
P

)
=

(
P
b

)
=

(
1
b

)
= 1.

Similarly,
(qk
P
)
=

(q
P
)
=

(P
q
)
=

(c
q
)
= −1. Finally, we get that(

a
P

)
=

(
±1
P

)(
22h
P

)(
qk

P

)(
b
P

)
= −1.
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Proof (cont.)

If a = −b2, where b ∈ Z. As before, let P be such that

P ≡ 3 (mod 4) and (P,b) = 1,

then (
a
P

)
=

(
−1
P

)(
b2
P

)
= −1.

This concludes the proof.
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An example

We will show that, if n is a positive odd number,(
6
n

)
=

1, if n ≡ ±1 or ± 5 (mod 24),
−1, if n ≡ ±7 or ± 11 (mod 24).

We have that(
6
n

)
=

(
2
n

)(
3
n

)
= (−1)(n2−1)/8

(
3
n

)
= (−1) n2−1

8 + n−1
2

(
n
3

)
.

The result follows from the facts

(−1) n2−1
8 + n−1

2 =

1, if n ≡ 1 or 3 (mod 8),
−1, if n ≡ −1 or − 3 (mod 8),(

n
3

)
=

1, if n ≡ 1 (mod 3),
−1, if n ≡ −1 (mod 3),

and the Chinese Remainder Theorem. 15/15



Stay home, stay safe!
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