MEM204-NuMber Theory

8th virtual lecture

Giorgos Kapetanakis
Spring semester 2019-20-29/04/2020
University of Crete

The Jacobi Symbol

Definition

Let $n>1$ be an odd integer and let

$$
n=p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}
$$

be its prime factorization. Then, if $a \in \mathbb{Z}$ is such that $(a, n)=1$, the Jacobi symbol (бú $\mu \beta$ о入o Jacobi) of a modulo n is

$$
\left(\frac{a}{n}\right)=\left(\frac{a}{p_{1}}\right)^{n_{1}} \cdots\left(\frac{a}{p_{k}}\right)^{n_{k}}
$$

where $\left(\frac{a}{p_{i}}\right)$ stands for the Legendre symbol of a modulo p_{i} ($i=1, \ldots, k$).

Some facts

- Clearly, $\left(\frac{a}{n}\right) \in\{ \pm 1\}$.
- If n is an odd prime, then the Jacobi symbol $\left(\frac{a}{n}\right)$ coincides with the Legendre symbol $\left(\frac{a}{n}\right)$. This means that the Jacobi symbol generalizes the Legendre symbol.
- As we will see today, the two symbols share even more properties.

Some facts

Remark

Some times in the literature, both the Legendre and the Jacobi symbols are defined without the restriction $(a, n)=1$. In this case, by definition, $\left(\frac{a}{n}\right)=0$.

Remark

As we will see in more detail in the upcoming exercise set, if $\left(\frac{a}{n}\right)=-1$, then a is not a quadratic residue modulo n. However, the inverse is not true.

Basic properties

Proposition

Let $m, n>1$ be odd numbers and $a, b \in \mathbb{Z}$ be co-prime to both m and n. Then the following hold:

1. $\left(\frac{a b}{n}\right)=\left(\frac{a}{n}\right)\left(\frac{b}{n}\right)$.
2. $\left(\frac{a}{m n}\right)=\left(\frac{a}{m}\right)\left(\frac{a}{n}\right)$.
3. $a \equiv b(\bmod n) \Rightarrow\left(\frac{a}{n}\right)=\left(\frac{b}{n}\right)$.
4. $\left(\frac{a^{2}}{n}\right)=1$.

Assume that $n=p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}$ and $m=p_{1}^{m_{1}} \cdots p_{k}^{m_{k}}\left(n_{i}, m_{i} \geq 0\right)$.

1. $\left(\frac{a b}{n}\right)=\left(\frac{a b}{p_{1}}\right)^{n_{1}} \cdots\left(\frac{a b}{p_{k}}\right)^{n_{k}}=\left(\frac{a}{p_{1}}\right)^{n_{1}} \cdots\left(\frac{a}{p_{k}}\right)^{n_{k}}\left(\frac{b}{p_{1}}\right)^{n_{1}} \cdots\left(\frac{b}{p_{k}}\right)^{n_{k}}=$ $\left(\frac{a}{n}\right)\left(\frac{b}{n}\right)$.
2. $\left(\frac{a}{m n}\right)=\left(\frac{a}{p_{1}}\right)^{m_{1}+n_{1}} \cdots\left(\frac{a}{p_{k}}\right)^{m_{k}+n_{k}}=$

$$
\left(\frac{a}{p_{1}}\right)^{m_{1}} \cdots\left(\frac{a}{p_{k}}\right)^{m_{k}}\left(\frac{a}{p_{1}}\right)^{n_{1}} \cdots\left(\frac{a}{p_{k}}\right)^{n_{k}}=\left(\frac{a}{m}\right)\left(\frac{a}{n}\right)
$$

3. Let $a \equiv b(\bmod n)$. Then, clearly, $a \equiv b\left(\bmod p_{i}\right)$ for every i. Hence

$$
\left(\frac{a}{n}\right)=\left(\frac{a}{p_{1}}\right)^{n_{1}} \cdots\left(\frac{a}{p_{k}}\right)^{n_{k}}=\left(\frac{b}{p_{1}}\right)^{n_{1}} \cdots\left(\frac{b}{p_{k}}\right)^{n_{k}}=\left(\frac{b}{n}\right) .
$$

4. $\left(\frac{a^{2}}{n}\right)=\left(\frac{a^{2}}{p_{1}}\right)^{n_{1}} \cdots\left(\frac{a^{2}}{p_{k}}\right)^{n_{k}}=1$.

Proposition

Let n be an odd number. Then

$$
\left(\frac{-1}{n}\right)=(-1)^{(n-1) / 2}
$$

and

$$
\left(\frac{2}{n}\right)=(-1)^{\left(n^{2}-1\right) / 8}
$$

Proof

Assume that $n=p_{1} \cdots p_{k}$, where the numbers p_{1}, \ldots, p_{k} are (not necessarily distinct) odd primes. Then

$$
\left(\frac{-1}{n}\right)=\left(\frac{-1}{p_{1}}\right) \cdots\left(\frac{-1}{p_{k}}\right)=(-1)^{\frac{p_{1}-1}{2}} \cdots(-1)^{\frac{p_{k}-1}{2}}=(-1)^{p}
$$

where $P=\sum_{i=1}^{k} \frac{p_{i}-1}{2}$. Thus it suffices to show that

$$
P \equiv(n-1) / 2 \quad(\bmod 2)
$$

The above follows from the fact that, if p, q are odd primes,

$$
(p-1)(q-1) \equiv 0 \quad(\bmod 4) \Rightarrow p q-1 \equiv p+q-2 \quad(\bmod 4)
$$

that is,

$$
\frac{p q-1}{2} \equiv \frac{p-1}{2}+\frac{q-1}{2} \quad(\bmod 2)
$$

Proof (cont.)

Similarly,
where $Q=\sum_{i=1}^{k} \frac{p_{i}^{2}-1}{8}$. Thus it suffices to show that

$$
Q \equiv\left(n^{2}-1\right) / 8 \quad(\bmod 2)
$$

The above follows from the fact that, if p, q are odd primes, then $p^{2} \equiv q^{2} \equiv 1(\bmod 8)$, hence
$\left(p^{2}-1\right)\left(q^{2}-1\right) \equiv 0 \quad(\bmod 64) \Rightarrow(p q)^{2}-1 \equiv p^{2}+q^{2}-2 \quad(\bmod 64)$,
that is,

$$
\frac{(p q)^{2}-1}{8} \equiv \frac{p^{2}-1}{8}+\frac{q^{2}-1}{8} \quad(\bmod 8) .
$$

The Quadratic Reciprocity Law

Theorem (The quadratic reciprocity law for the Jacobi symbol)
Let $m, n>1$ be odd, co-prime numbers. Then

$$
\left(\frac{m}{n}\right)\left(\frac{n}{m}\right)=(-1)^{\frac{(m-1)(n-1)}{4}} \text {. }
$$

Proof.

Omitted.

A FEW EXAMPLES AND APPLICATIONS

An interesting application

Theorem

Let $a \in \mathbb{Z}$. Then

$$
\left(\frac{a}{p}\right)=1,
$$

for all odd primes p, if and only if $a=b^{2}$, for some $b \in \mathbb{Z}$.
Proof. If $a=b^{2}$, for some b, then clearly for every odd prime $p,\left(\frac{a}{p}\right)=\left(\frac{b^{2}}{p}\right)=1$. Now assume that $a \neq b^{2}$, for all $b \in \mathbb{Z}$. It suffices to show that there exists some positive odd number P, such that $\left(\frac{a}{\rho}\right)=-1$, since, in this case, there exists a prime factor p of P, with $\left(\frac{a}{\bar{p}}\right)=-1$. We distinguich three cases:

Proof (cont.)

If $a= \pm 2^{k} b$, where k, b are odd positive numbers. The Chinese Remainder Theorem implies that there exists some P, with

$$
P \equiv 5(\bmod 8) \text { and } P \equiv 1(\bmod b) .
$$

It follows that $4 \mid P-1$, which combined with the fact that $b-1$ is even, yields that $\frac{(P-1)(b-1)}{4}$ is even. Now the quadratic reciprocity law yields

$$
\left(\frac{b}{P}\right)=\left(\frac{P}{b}\right)=\left(\frac{1}{b}\right)=1 .
$$

Moreover, $P \equiv 5(\bmod 8)$, implies $\left(\frac{-1}{P}\right)=1$ and $\left(\frac{2}{P}\right)=-1$. Hence,

$$
\left(\frac{a}{P}\right)=\left(\frac{ \pm 1}{P}\right)\left(\frac{2}{P}\right)^{k}\left(\frac{b}{P}\right)=1 \cdot(-1)^{k} \cdot 1=-1 .
$$

Proof (cont.)

If $a= \pm 2^{2 h} q^{k} b$, where q is an odd prime and k, b are odd numbers and $q \nmid b$. The Chinese Remainder Theorem implies that there exists some P, with

$$
P \equiv 1(\bmod 4), P \equiv 1(\bmod b) \text { and } P \equiv c(\bmod q),
$$

where c is a non-quadratic residue modulo q. It follows that $4 \mid P-1$, which combined with the fact that $b-1$ is even, yields that $\frac{(P-1)(b-1)}{4}$ is even. Now the quadratic reciprocity law yields

$$
\left(\frac{b}{P}\right)=\left(\frac{P}{b}\right)=\left(\frac{1}{b}\right)=1 .
$$

Similarly, $\left(\frac{q^{k}}{P}\right)=\left(\frac{q}{p}\right)=\left(\frac{p}{q}\right)=\left(\frac{c}{q}\right)=-1$. Finally, we get that

$$
\left(\frac{a}{P}\right)=\left(\frac{ \pm 1}{P}\right)\left(\frac{2^{2 h}}{P}\right)\left(\frac{q^{k}}{P}\right)\left(\frac{b}{P}\right)=-1 .
$$

Proof (cont.)

If $a=-b^{2}$, where $b \in \mathbb{Z}$. As before, let P be such that

$$
P \equiv 3 \quad(\bmod 4) \text { and }(P, b)=1
$$

then

$$
\left(\frac{a}{P}\right)=\left(\frac{-1}{P}\right)\left(\frac{b^{2}}{P}\right)=-1
$$

This concludes the proof.

An example

We will show that, if n is a positive odd number,

$$
\left(\frac{6}{n}\right)= \begin{cases}1, & \text { if } n \equiv \pm 1 \text { or } \pm 5 \quad(\bmod 24) \\ -1, & \text { if } n \equiv \pm 7 \text { or } \pm 11 \quad(\bmod 24)\end{cases}
$$

We have that

$$
\left(\frac{6}{n}\right)=\left(\frac{2}{n}\right)\left(\frac{3}{n}\right)=(-1)^{\left(n^{2}-1\right) / 8}\left(\frac{3}{n}\right)=(-1)^{\frac{n^{2}-1}{8}+\frac{n-1}{2}}\left(\frac{n}{3}\right) .
$$

The result follows from the facts

$$
\begin{aligned}
(-1)^{\frac{n^{2}-1}{8}+\frac{n-1}{2}} & = \begin{cases}1, & \text { if } n \equiv 1 \text { or } 3 \quad(\bmod 8) \\
-1, & \text { if } n \equiv-1 \text { or }-3 \quad(\bmod 8),\end{cases} \\
\left(\frac{n}{3}\right) & = \begin{cases}1, & \text { if } n \equiv 1 \quad(\bmod 3), \\
-1, & \text { if } n \equiv-1 \quad(\bmod 3),\end{cases}
\end{aligned}
$$

and the Chinese Remainder Theorem.

Stay home, stay safe!

