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POLYNOMIAL CONGRUENCES MODULO A
PRIME POWER



The derivative

Definition
Let

f(x) =
n∑

i=0
fixi ∈ R[x]

be a polynomial. The polynomial

f′(x) =
n∑
i=1

ifixi−1

is the (formal) derivative of f.

Example
The derivative of f(x) = 4x3 + 3x2 + x+ 1 is
f′(x) = 12x2 + 6x+ 1.
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A recursive result

Theorem
Let p be a prime, r ≥ 2 and f(x) =

∑n
i=0 fixi ∈ Z[x]. Moreover,

assume that
f(x) ≡ 0 (mod pr−1)

is satisfied for some b ∈ Zpr−1 . Then We have the following
cases regarding

f(x) ≡ 0 (mod pr). (1)
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A recursive result

Theorem (cont.)
• If f′(b) ̸≡ 0 (mod p), then there exists a unique solution of
(1) corresponding to b (mod pr−1). This solution is
a ≡ tpr−1 + b (mod pr), where t satisfies

f′(b)t ≡
(
−f(b)
pr−1

)
(mod p).

• If f′(b) ≡ 0 (mod p), then, we have two subcases:
• If f(b) ≡ 0 (mod pr), then there are p solutions of (1)
corresponding to b (mod pr−1), namely at ≡ tpr−1 + b
(mod pr), for t = 0, 1, . . . ,p− 1.

• If f(b) ̸≡ 0 (mod pr), then there are no solutions of (1)
corresponding to b (mod pr−1).
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Proof

Let a be a solution of (1), corresponding to b (mod pr−1), i.e.,
a ≡ b (mod pr−1), hence, a = b+ tpr−1 for some t. Then

f(a) = f(b+ tpr−1) =
n∑

i=0
fi

 i∑
k=0

(
i
k

)
bk(tpr−1)i−k

 ,

which implies

f(a) = f(b) + f′(b)tpr−1 +Mp2r−2,

where M ∈ Z. Given that f(b) ≡ 0 (mod pr−1), we have that
f(b) = spr−1, for some s, while clearly 2r− 2 ≥ r. Hence,

f(a) ≡ 0 (mod pr) ⇐⇒ s+ tf′(b) ≡ 0 (mod p).
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Proof

First, we take the case f′(b) ̸≡ 0 (mod p). Then there exists
t̄ ∈ Zp, such that tf′(b) ≡ −s (mod p). It follows that
a = tpr−1 + b satisfies (1), while it is not hard to check that
this number is unique (mod p).

Then we focus on the case f′(b) ≡ 0 (mod p). Then, if s ̸≡ 0
(mod p), then s+ tf′(b) ≡ 0 (mod p) is impossible. On the
other hand, if s ≡ 0 (mod p), then it is true for every t. The
proof is complete, after we observe that the numbers
at = tpr−1+ s, (t = 0, 1, . . . ,p− 1) are not equivalent modulo pr.
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Consequences

• The latter provides a recursive method for solving
polynomial congruences of the form

f(x) ≡ 0 (mod pr)

as follows: (1) Solve f(x) ≡ 0 (mod p). (2) Given the
solutions of f(x) ≡ 0 (mod p), find the solutions of
f(x) ≡ 0 (mod p2). · · · (r) Given the solutions of f(x) ≡ 0
(mod pr−1), find the solutions of f(x) ≡ 0 (mod pr).

• A combination of this with previous results suggests a
complete method for solving polynomial congruences
over any modulus.
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AN ELABORATE EXAMPLE



An example

Lets solve the congruence

4x4 + 4x3 + 6x2 + 21x+ 7 ≡ 0 (mod 252). (2)

Our first step is to factor the modulus into primes and split
the problem into smaller ones. Here, we have that

252 = 22327,

hence, if f(x) = 4x4 + 4x3 + 6x2 + 21x+ 7, it suffices to solve

f(x) ≡ 0 (mod 22), (3)

f(x) ≡ 0 (mod 32) (4)
and

f(x) ≡ 0 (mod 7). (5)
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An example

First, we focus on (3). First we solve

f(x) ≡ 0 (mod 2),

which is trivial to see that, 1 is its only solution (mod 2).
Then, we compute

f′(x) = 16x3 + 12x2 + 12x+ 21,

that is f′(1) ̸≡ 0 (mod 2). So, we conclude that there is a
unique solution of (3), namely x ≡ 3 (mod 4).

Remark
In this case, we could also check all the elements of Z4 in (3)
directly, since 4 is a small, manageable number.
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An example

Then, we focus on (4). First, we consider f(x) ≡ 0 (mod 3). We
easily check that this is equivalent to x2 + x+ 1 ≡ 0 (mod 3),
that has the unique solution 1 (mod 3). Again, we confirm
that f′(1) ̸≡ 0 (mod 3), hence we have a unique solution for
(4).

In order to find it, we compute −f(1)/p2−1 = −42/3 = −14 and
f′(1) = 61, that is, we need to solve

61t ≡ −14 (mod 3).

The above is equivalent to t ≡ 1 (mod 3), so our (unique)
solution is x ≡ tpr−1 + b ≡ 4 (mod 9).
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An example

Finally, we focus on (5). One can easily see that this is
equivalent to

2x2(2x2 + 2x+ 3) ≡ 0 (mod 7).

Since 7 is a prime, the latter yields that either x ≡ 0 (mod 7),
or 2x2 + 2x+ 3 ≡ 0 (mod 7). We explicitly check all values of
Z7, and conclude that the second’s congruence solutions are 1
and 5 (mod 7).

In total, we have three solutions x ≡ 0 (mod 7), x ≡ 1 (mod 7)
and x ≡ 5 (mod 7).
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An example

To sum up, the solutions of the original congruence, are the
solutions of the systems
x ≡ 3 (mod 4),
x ≡ 4 (mod 9),
x ≡ 0 (mod 7),


x ≡ 3 (mod 4),
x ≡ 4 (mod 9),
x ≡ 1 (mod 7),

and


x ≡ 3 (mod 4),
x ≡ 4 (mod 9),
x ≡ 5 (mod 7).

The solutions of the above systems are

x ≡ 175, 211 and 103 (mod 252)

respectively.
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QUADRATIC RESIDUES (ΤΕΤΡΑΓωΝιΚά
υπόΛΟιπΑ)



Introduction

A famous question in Number Theory is whether the
congruence

x2 ≡ a (mod n),

where (a,n) = 1, is solvable or not. If it is solvable (in other
words if ā ∈ Zn is a square) we call a a quadratic residue
modulo n (τετραγωνικό υπόλοιπο modulo n). Otherwise, it is
called a quadratic non-residue modulo n (μη-τετραγωνικό
υπόλοιπο modulo n).

Unsurprisingly, as we will see in upcoming exercises in detail,
this can be reduced to the same question, when n is a prime.
This is why we first focus on that case.
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The Legendre symbol

Definition
Let a ∈ Z and p some prime such that p ∤ a. The Legendre
symbol (σύμβολο Legendre) of a (mod p) is

(
a
p

)
=

1, if a is quadratic residue modulo p,
−1, if a is non-quadratic residue modulo p.

Our next aim is to describe the computation of the Legendre
symbol for any a and p.
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The Legendre symbol - Basic properties

From the definition of the Legendre symbol, one immediately
gets the following.

• If 0 ̸≡ a ≡ b (mod p), then(
a
p

)
=

(
b
p

)
.

• If p ∤ a, then (
a2
p

)
= 1.

• For every prime p, (
1
p

)
= 1.
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Stay home, stay safe!
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