MEM204-NuMber Theory

6th virtual lecture

Giorgos Kapetanakis
Spring semester 2019-20-23/04/2020
University of Crete

POLYNOMIAL CONGRUENCES MODULO A PRIME POWER

The derivative

Definition

Let

$$
f(x)=\sum_{i=0}^{n} f_{i} x^{i} \in \mathbb{R}[x]
$$

be a polynomial. The polynomial

$$
f^{\prime}(x)=\sum_{i=1}^{n} i f_{i} x^{i-1}
$$

is the (formal) derivative of f.

Example

The derivative of $f(x)=4 x^{3}+3 x^{2}+x+1$ is
$f^{\prime}(x)=12 x^{2}+6 x+1$.

A recursive result

Theorem

Let p be a prime, $r \geq 2$ and $f(x)=\sum_{i=0}^{n} f_{i} x^{i} \in \mathbb{Z}[x]$. Moreover, assume that

$$
f(x) \equiv 0 \quad\left(\bmod p^{r-1}\right)
$$

is satisfied for some $b \in \mathbb{Z}_{p^{r-1}}$. Then We have the following cases regarding

$$
\begin{equation*}
f(x) \equiv 0 \quad\left(\bmod p^{r}\right) . \tag{1}
\end{equation*}
$$

A recursive result

Theorem (cont.)

- If $f^{\prime}(b) \not \equiv 0(\bmod p)$, then there exists a unique solution of (1) corresponding to $b\left(\bmod p^{r-1}\right)$. This solution is $a \equiv t p^{r-1}+b\left(\bmod p^{r}\right)$, where t satisfies

$$
f^{\prime}(b) t \equiv\left(\frac{-f(b)}{p^{r-1}}\right) \quad(\bmod p) .
$$

- If $f^{\prime}(b) \equiv 0(\bmod p)$, then, we have two subcases:
- If $f(b) \equiv 0\left(\bmod p^{r}\right)$, then there are p solutions of (1) corresponding to $b\left(\bmod p^{r-1}\right)$, namely $a_{t} \equiv t p^{r-1}+b$ $\left(\bmod p^{r}\right)$, for $t=0,1, \ldots, p-1$.
- If $f(b) \not \equiv 0\left(\bmod p^{r}\right)$, then there are no solutions of (1) corresponding to $b\left(\bmod p^{r-1}\right)$.

Proof

Let a be a solution of (1), corresponding to $b\left(\bmod p^{r-1}\right)$, i.e., $a \equiv b\left(\bmod p^{r-1}\right)$, hence, $a=b+t p^{r-1}$ for some t. Then

$$
f(a)=f\left(b+t p^{r-1}\right)=\sum_{i=0}^{n} f_{i}\left(\sum_{k=0}^{i}\binom{i}{k} b^{k}\left(t p^{r-1}\right)^{i-k}\right),
$$

which implies

$$
f(a)=f(b)+f^{\prime}(b) t p^{r-1}+M p^{2 r-2},
$$

where $M \in \mathbb{Z}$. Given that $f(b) \equiv 0\left(\bmod p^{r-1}\right)$, we have that $f(b)=s p^{r-1}$, for some s, while clearly $2 r-2 \geq r$. Hence,

$$
f(a) \equiv 0 \quad\left(\bmod p^{r}\right) \Longleftrightarrow s+t f^{\prime}(b) \equiv 0 \quad(\bmod p) .
$$

Proof

First, we take the case $f^{\prime}(b) \not \equiv 0(\bmod p)$. Then there exists $\bar{t} \in \mathbb{Z}_{p}$, such that $t f^{\prime}(b) \equiv-s(\bmod p)$. It follows that $a=t p^{r-1}+b$ satisfies (1), while it is not hard to check that this number is unique $(\bmod p)$.

Then we focus on the case $f^{\prime}(b) \equiv 0(\bmod p)$. Then, if $s \not \equiv 0$ $(\bmod p)$, then $s+t f^{\prime}(b) \equiv 0(\bmod p)$ is impossible. On the other hand, if $s \equiv 0(\bmod p)$, then it is true for every t. The proof is complete, after we observe that the numbers $a_{t}=t p^{r-1}+s,(t=0,1, \ldots, p-1)$ are not equivalent modulo p^{r}.

Consequences

- The latter provides a recursive method for solving polynomial congruences of the form

$$
f(x) \equiv 0 \quad\left(\bmod p^{r}\right)
$$

as follows: (1) Solve $f(x) \equiv 0(\bmod p)$. (2) Given the solutions of $f(x) \equiv 0(\bmod p)$, find the solutions of $f(x) \equiv 0\left(\bmod p^{2}\right) . \cdots(r)$ Given the solutions of $f(x) \equiv 0$ $\left(\bmod p^{r-1}\right)$, find the solutions of $f(x) \equiv 0\left(\bmod p^{r}\right)$.

- A combination of this with previous results suggests a complete method for solving polynomial congruences over any modulus.

AN ELABORATE EXAMPLE

An example

Lets solve the congruence

$$
\begin{equation*}
4 x^{4}+4 x^{3}+6 x^{2}+21 x+7 \equiv 0 \quad(\bmod 252) \tag{2}
\end{equation*}
$$

Our first step is to factor the modulus into primes and split the problem into smaller ones. Here, we have that

$$
252=2^{2} 3^{2} 7
$$

hence, if $f(x)=4 x^{4}+4 x^{3}+6 x^{2}+21 x+7$, it suffices to solve

$$
\begin{align*}
& f(x) \equiv 0 \quad\left(\bmod 2^{2}\right) \tag{3}\\
& f(x) \equiv 0 \quad\left(\bmod 3^{2}\right) \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
f(x) \equiv 0 \quad(\bmod 7) \tag{5}
\end{equation*}
$$

An example

First, we focus on (3). First we solve

$$
f(x) \equiv 0 \quad(\bmod 2)
$$

which is trivial to see that, 1 is its only solution (mod 2). Then, we compute

$$
f^{\prime}(x)=16 x^{3}+12 x^{2}+12 x+21
$$

that is $f^{\prime}(1) \not \equiv 0(\bmod 2)$. So, we conclude that there is a unique solution of (3), namely $x \equiv 3(\bmod 4)$.

Remark

In this case, we could also check all the elements of \mathbb{Z}_{4} in (3) directly, since 4 is a small, manageable number.

An example

Then, we focus on (4). First, we consider $f(x) \equiv 0(\bmod 3)$. We easily check that this is equivalent to $x^{2}+x+1 \equiv 0(\bmod 3)$, that has the unique solution $1(\bmod 3)$. Again, we confirm that $f^{\prime}(1) \not \equiv 0(\bmod 3)$, hence we have a unique solution for (4).

In order to find it, we compute $-f(1) / p^{2-1}=-42 / 3=-14$ and $f^{\prime}(1)=61$, that is, we need to solve

$$
61 t \equiv-14 \quad(\bmod 3)
$$

The above is equivalent to $t \equiv 1(\bmod 3)$, so our (unique) solution is $x \equiv t p^{r-1}+b \equiv 4(\bmod 9)$.

An example

Finally, we focus on (5). One can easily see that this is equivalent to

$$
2 x^{2}\left(2 x^{2}+2 x+3\right) \equiv 0 \quad(\bmod 7)
$$

Since 7 is a prime, the latter yields that either $x \equiv 0(\bmod 7)$, or $2 x^{2}+2 x+3 \equiv 0(\bmod 7)$. We explicitly check all values of \mathbb{Z}_{7}, and conclude that the second's congruence solutions are 1 and $5(\bmod 7)$.

In total, we have three solutions $x \equiv 0(\bmod 7), x \equiv 1(\bmod 7)$ and $x \equiv 5(\bmod 7)$.

An example

To sum up, the solutions of the original congruence, are the solutions of the systems

$$
\left\{\begin{array} { l l }
{ x \equiv 3 } & { (\operatorname { m o d } 4) , } \\
{ x \equiv 4 } & { (\operatorname { m o d } 9) , } \\
{ x \equiv 0 } & { (\operatorname { m o d } 7) , }
\end{array} \quad \left\{\begin{array} { l l }
{ x \equiv 3 } & { (\operatorname { m o d } 4) , } \\
{ x \equiv 4 } & { (\operatorname { m o d } 9) , } \\
{ x \equiv 1 } & { (\operatorname { m o d } 7) , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
x \equiv 3 & (\bmod 4) \\
x \equiv 4 & (\bmod 9) \\
x \equiv 5 & (\bmod 7)
\end{array}\right.\right.\right.
$$

The solutions of the above systems are

$$
x \equiv 175,211 \text { and } 103 \quad(\bmod 252)
$$

respectively.

Quadratic residues (Tetpar@nika ҮПОЛОІПА)

Introduction

A famous question in Number Theory is whether the congruence

$$
x^{2} \equiv a \quad(\bmod n)
$$

where $(a, n)=1$, is solvable or not. If it is solvable (in other words if $\bar{a} \in \mathbb{Z}_{n}$ is a square) we call a a quadratic residue modulo n (тєт $\rho \alpha ү \omega$ vıко́ uто́入оıпо modulo n). Otherwise, it is called a quadratic non-residue modulo n ($\mu \eta$-тєт $\rho \alpha ү \omega$ vıко́ ито́лоıто modulo n).

Unsurprisingly, as we will see in upcoming exercises in detail, this can be reduced to the same question, when n is a prime. This is why we first focus on that case.

The Legendre symbol

Definition

Let $a \in \mathbb{Z}$ and p some prime such that $p \nmid a$. The Legendre symbol (oú μ ßo入o Legendre) of $a(\bmod p)$ is

$$
\left(\frac{a}{p}\right)= \begin{cases}1, & \text { if } a \text { is quadratic residue modulo } p \\ -1, & \text { if } a \text { is non-quadratic residue modulo } p\end{cases}
$$

Our next aim is to describe the computation of the Legendre symbol for any a and p.

The Legendre symbol - Basic properties

From the definition of the Legendre symbol, one immediately gets the following.

- If $0 \not \equiv a \equiv b(\bmod p)$, then

$$
\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)
$$

- If $p \nmid a$, then

$$
\left(\frac{a^{2}}{p}\right)=1
$$

- For every prime p,

$$
\left(\frac{1}{p}\right)=1
$$

Stay home, stay safe!

