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POLYNOMIAL CONGRUENCES MODULO A
PRIME POWER



The derivative

Definition
Let
n .
f) = fix e R[x]
i=0
be a polynomial. The polynomial

n

FO = ifn

i=1
is the of f.
Example
The derivative of f(x) = 4x3 +3x2 + x + 1is
f(x) = 12x% + 6x + 1.
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A recursive result

Theorem

Let p be a prime, r > 2 and f(x) = .1, fix' € Z[x]. Moreover,
assume that

f)=0 (mod p"")

is satisfied for some b € Z,—. Then We have the following
cases regarding

f(x)=0 (mod p"). (1)
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A recursive result

Theorem (cont.)
- Iff(b) # 0 (mod p), then there exists a unique solution of
(1) corresponding to b (mod p"="). This solution is
a=tp™~'+ b (mod p"), where t satisfies

Foye=(J5)) (modp)

- Iff(b) =0 (mod p), then, we have two subcases:
- Iff(b) = 0 (mod p"), then there are p solutions of (1)
corresponding to b (mod p"~"), namely a; =tp"" + b
(mod p"), fort=0,1,....p — 1.
« Iff(b) # 0 (mod p"), then there are no solutions of (1)
corresponding to b (mod p™).
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Let a be a solution of (1), corresponding to b (mod p" '), i.e.,
a=b (mod p), hence, a = b +tp™' for some t. Then

fla) = fb+ o) = S (Z( JECRS )
i=0 k=0
which implies

fla) = f(b) + f (b)tp™" + Mp* 2,

where M € Z. Given that f(b) = 0 (mod p"~"), we have that
f(b) = sp™1, for some s, while clearly 2r — 2 > r. Hence,

fla)=0 (modp") < s+tf(b)=0 (mod p).
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First, we take the case f'(b) ## 0 (mod p). Then there exists
t € Zp, such that tf (b) = —s (mod p). It follows that

a = tp~" + b satisfies (1), while it is not hard to check that
this number is unique (mod p).

Then we focus on the case f(b) = 0 (mod p). Then, ifs #0
(mod p), then s +tf(b) = 0 (mod p) is impossible. On the
other hand, if s = 0 (mod p), then it is true for every t. The
proof is complete, after we observe that the numbers
ar=tp™~1+s,(t=0,1,...,p—1) are not equivalent modulo p".
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Consequences

« The latter provides a recursive method for solving
polynomial congruences of the form

flx)=0 (mod p")

as follows: (1) Solve f(x) = 0 (mod p). (2) Given the
solutions of f(x) = 0 (mod p), find the solutions of
f(x) =0 (mod p?). --- (r) Given the solutions of f(x) = 0
(mod p™T), find the solutions of f(x) = 0 (mod p").

« A combination of this with previous results suggests a
complete method for solving polynomial congruences
over any modulus.
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AN ELABORATE EXAMPLE




Lets solve the congruence
4x* 4+ 4x> +6x2 +21x+7=0 (mod 252). (2)

Our first step is to factor the modulus into primes and split
the problem into smaller ones. Here, we have that

252 = 23?7,

hence, if f(x) = 4x* + 4x3 + 6x2 + 21x + 7, it suffices to solve

f(x)=0 (mod 2?%), (3)

f(x)=0 (mod 3?) (4)
and

f(x)=0 (mod 7). (5)
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First, we focus on (3). First we solve
f(x)=0 (mod 2),

which is trivial to see that, 1is its only solution (mod 2).
Then, we compute

f(%) =16x3 +12x* 4 12x + 21,

that is f(1) # 0 (mod 2). So, we conclude that there is a
unique solution of (3), namely

Remark

In this case, we could also check all the elements of Zy in (3)
directly, since 4 is a small, manageable number.
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Then, we focus on (4). First, we consider f(x) = 0 (mod 3). We
easily check that this is equivalent to x> + x +1=0 (mod 3),
that has the unique solution 1 (mod 3). Again, we confirm
that (1) # 0 (mod 3), hence we have a unique solution for

(4).

In order to find it, we compute —f(1)/p* ' = —42/3 = —14 and
f(1) = 61, that is, we need to solve

61t = —14 (mod 3).

The above is equivalent to t =1 (mod 3), so our (unique)
solutionisx =tp"™~ '+ b =4 (mod 9).
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Finally, we focus on (5). One can easily see that this is
equivalent to

2X(2x* +2x+3)=0 (mod 7).

Since 7 is a prime, the latter yields that either x =0 (mod 7),
or 2x? +2x +3 =0 (mod 7). We explicitly check all values of
Z3, and conclude that the second’s congruence solutions are 1
and 5 (mod 7).

In total, we have three solutions x = 0 (mod 7), x =1 (mod 7)
and x =5 (mod 7).
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To sum up, the solutions of the original congruence, are the
solutions of the systems

x=3 (mod 4), x=3 (mod 4), x=3 (mod 4),
X=4 (mod9), x=4 (mod9), and{x=4 (mod?9),
x=0 (mod7), x=1 (mod7), x=5 (mod 7).

The solutions of the above systems are
x =175, 211 and 103 (mod 252)

respectively.

12/15



QUADRATIC RESIDUES (TETPAFQNIKA
YNOAOINA)




Introduction

A famous question in Number Theory is whether the
congruence

x*=a (mod n),

where (a,n) = 1, is solvable or not. If it is solvable (in other
words if a € Z, is a square) we call a a quadratic residue
modulo n (teTpaywviko umoAoimo modulo n). Otherwise, it is
called a quadratic non-residue modulo n (un-TeTpaywvikod
uTtoAotto modulo n).

Unsurprisingly, as we will see in upcoming exercises in detail,
this can be reduced to the same question, when n is a prime.
This is why we first focus on that case.

13/15



The Legendre symbol

Definition
Let a € Z and p some prime such that p t a. The
(obuBolo Legendre) of a (mod p) is

(a) - {1, if a is quadratic residue modulo p,

—1, ifais non-quadratic residue modulo p.

Our next aim is to describe the computation of the Legendre
symbol for any a and p.
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The Legendre symbol - Basic properties

From the definition of the Legendre symbol, one immediately

gets the following.

« If0#£a=>b (mod p), then

« If p1a,then
« For every prime p,
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Stay home, stay safe!



	Polynomial congruences modulo a prime power
	An elaborate example
	Quadratic residues (Τετραγωνικά υπόλοιπα)

