MEM204-NuMber Theory

4th virtual lecture

Giorgos Kapetanakis
Spring semester 2019-20-08/04/2020
University of Crete

ANSWERS OF THE 3RD SET

Exercise 1

Exercise

Find $13^{23} 27^{41}(\bmod 8)$.

Answer

We have that $13 \equiv 5(\bmod 8)$ and that $27 \equiv 3(\bmod 8)$.
Moreover, given that $\varphi(8)=4$, Euler's theorem implies

$$
13^{23} \equiv 5^{23} \equiv 5^{4 \cdot 5+3} \equiv\left(5^{4}\right)^{5} 5^{3} \equiv 1^{5} 125 \equiv 5 \quad(\bmod 8)
$$

and

$$
27^{41} \equiv 3^{4 \cdot 10+1} \equiv\left(3^{4}\right)^{10} 3^{1} \equiv 1^{10} 3 \equiv 3 \quad(\bmod 8)
$$

It follows that $13^{23} 27^{41} \equiv 5 \cdot 3 \equiv 15 \equiv 7(\bmod 8)$.

Exercise 2

Exercise

Prove that $7 \mid 111^{333}+333^{111}$.

Answer

We have that $111 \equiv-1(\bmod 7)$ and $333 \equiv 4(\bmod 7)$. Moreover, Fermat's theorem implies $4^{6} \equiv 1(\bmod 7)$. It follows that

$$
333^{111} \equiv 4^{6 \cdot 18+3} \equiv\left(4^{6}\right)^{18} 4^{3} \equiv 1^{18} \cdot 64 \equiv 1 \quad(\bmod 7),
$$

hence

$$
111^{333}+333^{111} \equiv(-1)^{333}+1 \equiv-1+1 \equiv 0 \quad(\bmod 7) .
$$

The result follows.

Exercise 3

Exercise

Prove that $(-13)^{n+1} \equiv(-13)^{n}+(-13)^{n-1}(\bmod 181)$, for $n \geq 1$.

Answer

First, for $n=1,(-13)^{2} \equiv 169(\bmod 181)$, and
$(-13)^{1}+(-13)^{0} \equiv-13+1 \equiv 169(\bmod 181)$. In other words, the statement holds for $n=1$.

Now, assume that the statement holds for $n=k$.
For $n=k+1$, we have that

$$
\begin{aligned}
(-13)^{k+2} \stackrel{\text { l.H. }}{=}(-13)(-13)^{k+1} & \equiv(-13)\left[(-13)^{k}+(-13)^{k-1}\right] \\
& \equiv(-13)^{k+1}+(-13)^{k} \quad(\bmod 181) .
\end{aligned}
$$

Exercise 4

Exercise

Find the residue of 4444^{4444} divided by 9 .

Answer

We easily see that the euclidean division between 4444 and 9 yields

$$
4444=493 \cdot 9+7
$$

that is, $4444 \equiv 7(\bmod 9)$. Moreover, since $(7,9)=1$, Euler's theorem implies that $7^{\varphi(9)}=7^{6} \equiv 1(\bmod 9)$. Now, we compute

$$
\begin{aligned}
4444^{4444} \equiv 7^{440 \cdot 6+4} \equiv\left(7^{6}\right)^{440} 7^{4} \equiv 1^{440} \cdot & 49^{2} \equiv 4^{2} \\
& \equiv 16 \equiv 7 \quad(\bmod 9)
\end{aligned}
$$

Exercise 7

Exercise

Let $m, n \in \mathbb{Z}$, such that $(m, n)=1$. Show that

$$
m^{\varphi(n)}+n^{\varphi(m)} \equiv 1 \quad(\bmod m n)
$$

Exercise 7

Answer

The desired result is equivalent to $m n \mid m^{\varphi(n)}+n^{\varphi(m)}-1$. Since $(m, n)=1$, the latter is equivalent to

$$
m \mid m^{\varphi(n)}+n^{\varphi(m)}-1 \text { and } n \mid m^{\varphi(n)}+n^{\varphi(m)}-1 .
$$

Furthermore, again because $(m, n)=1$, we get

$$
m^{\varphi(n)}+n^{\varphi(m)} \stackrel{m \mid m^{\varphi(n)}}{\equiv} n^{\varphi(m)} \stackrel{\text { Euler }}{\equiv} 1(\bmod m)
$$

or, equivalently $m \mid m^{\varphi(n)}+n^{\varphi(m)}-1$. Similarly, $n \mid m^{\varphi(n)}+n^{\varphi(m)}-1$.

Exercise 8

Exercise

Let p, q be distinct primes such that

$$
a^{p} \equiv a \quad(\bmod q) \text { and } a^{q} \equiv a \quad(\bmod p)
$$

Show that $a^{p q} \equiv a(\bmod p q)$.

Answer

We have that

$$
a^{p q} \equiv\left(a^{p}\right)^{q^{a^{p} \equiv a}} \stackrel{(\bmod q)}{\equiv} a^{q} \stackrel{\text { Fermat }}{\equiv} a \quad(\bmod q)
$$

Similarly, $a^{p q} \equiv a(\bmod p)$. In other words both p and q divide $a^{p q}-a$, that is, since $(p, q)=1, p q \mid a^{p q}-a$, which is equivalent to the desired result.

Exercise 9

Exercise

Solve the following congruences:

1. $34 x \equiv 60(\bmod 98)$,
2. $255 x \equiv 221(\bmod 391)$,
3. $-671 x \equiv 121(\bmod 737)$.

Exercise 9 - Answer - Item 1

We will solve this congruence using the euclidean algorithm explicitly. First, we use the euclidean algorithm to find whether we have a solution.

$$
\begin{align*}
98 & =2 \cdot 34+30 \tag{1}\\
34 & =30+4 \tag{2}\\
30 & =7 \cdot 4+2 \tag{3}\\
4 & =2 \cdot 2+0
\end{align*}
$$

It follows that $(98,34)=2$. In addition, $60=30 \cdot 2$, that is, we have 2 solutions $\bmod 98$ and if x_{0} is one of them, the other will be $x_{0}+\frac{98}{2}=x_{0}+49$. Now, the euclidean algorithm yields:

$$
2 \stackrel{(3)}{=} 30-7 \cdot 4 \stackrel{(2)}{=} 30-7(34-30)=-7 \cdot 34+8 \cdot 30
$$

$$
\stackrel{(1)}{=}-7 \cdot 34+8(98-2 \cdot 34)=8 \cdot 98-23 \cdot 34 .
$$

Exercise 9 - Answer - Item 1

We take this expression modulo 98 and get

$$
\begin{aligned}
& -23 \cdot 34 \equiv 2 \quad(\bmod 98) \\
\Rightarrow & 34(-23 \cdot 30) \equiv 2 \cdot 30 \quad(\bmod 98) \\
\Rightarrow & 34 \cdot 94 \equiv 60 \quad(\bmod 98) .
\end{aligned}
$$

It follows that the two solutions are $x_{0} \equiv 94(\bmod 98)$ and $x_{1} \equiv 45(\bmod 98)$.

Exercise 9 - Answer - Item 2

We easily see that $(255,391)=17 \mid 221$. It follows that we have 17 solutions modulo 391 . Also, $255 x \equiv 221$
$(\bmod 391) \Longleftrightarrow 15 x \equiv 13$ (mod 23). Moreover,

$$
\begin{align*}
23 & =15+8 \tag{4}\\
15 & =8+7 \tag{5}\\
8 & =7+1, \tag{6}
\end{align*}
$$

that is,
$1 \stackrel{(6)}{=} 8-7 \stackrel{(5)}{=} 8-(15-8)=-15+2 \cdot 8 \stackrel{(4)}{=}-15+2(23-15)=2 \cdot 23-3 \cdot 15$.

Exercise 9 - Answer - Item 2

From the latter, we get

$$
15 x \equiv 13(\bmod 23) \Longleftrightarrow x \equiv 13 \cdot(-3) \equiv 7 \quad(\bmod 23)
$$

It follows that the solutions of the original congruence are the numbers $\bmod 391$ that are $\equiv 7(\bmod 23)$, i.e.,

$$
7,7+23,7+2 \cdot 23, \ldots, 7+16 \cdot 23
$$

Exercise 9 - Answer - Item 3

First, note that the congruence can be rewritten as

$$
66 x \equiv 121 \quad(\bmod 737)
$$

Like in the previous case, we have $(66,737)=11 \mid 121$, thus we have 11 solutions modulo 737 , that are the solutions of $6 x \equiv 11$ (mod 67). We compute that $x \equiv 13(\bmod 67)$. It follows that the solutions of the original congruence are

$$
13,13+67, \ldots, 13+10 \cdot 67
$$

Exercise 10

Exercise

Find all the numbers $n>0$, such that $n^{13} \equiv n(\bmod 1365)$.

Exercise 10 - Answer

We will show that $n^{13} \equiv n(\bmod 1365)$ for every $n>0$. Take some $n>0$. First, notice that $1365=3 \cdot 5 \cdot 7 \cdot 13$. It follows that it suffices to prove that $3\left|n^{13}-n, 5\right| n^{13}-n, 7 \mid n^{13}-n$ and $13 \mid n^{13}-n$.

- Fermat's theorem implies $n^{3} \equiv n(\bmod 3)$. It follows that

$$
n^{13} \equiv n^{3 \cdot 4+1} \equiv\left(n^{3}\right)^{4} n \equiv n^{4} n \equiv n^{3} n^{2} \equiv n^{3} \equiv n \quad(\bmod 3)
$$

that is, $3 \mid n^{13}-n$.

- Fermat's theorem implies $n^{5} \equiv n(\bmod 5)$. It follows that

$$
n^{13} \equiv n^{5 \cdot 2+3} \equiv\left(n^{5}\right)^{2} n^{3} \equiv n^{2} n^{3} \equiv n^{5} \equiv n \quad(\bmod 5)
$$

that is, $5 \mid n^{13}-n$.

Exercise 10 - Answer

- Fermat's theorem implies $n^{7} \equiv n(\bmod 7)$. It follows that

$$
n^{13} \equiv n^{7+6} \equiv n^{7} n^{6} \equiv n \cdot n^{6} \equiv n^{7} \equiv n \quad(\bmod 7)
$$

that is, $7 \mid n^{13}-n$.

- Fermat's theorem implies $n^{13} \equiv n(\bmod 13)$, that is, $13 \mid n^{13}-n$.

This concludes the proof.

Exercise 11

Exercise

Let p be an odd prime. Show that

$$
1^{2} 3^{2} 5^{2} \cdots(p-2)^{2} \equiv(-1)^{(p+1) / 2} \quad(\bmod p) .
$$

Exercise 11 - Answer

We have that

$$
1^{2} 3^{2} 5^{2} \cdots(p-2)^{2}=(1 \cdot 3 \cdots(p-2))(1 \cdot 3 \cdots(p-2))
$$

However, since p is odd, we have that, for i odd, $p-i$ is even, while $i \equiv-(p-i)(\bmod p)$. It follows that

$$
\begin{aligned}
1 \cdot 3 \cdots(p-2) \equiv(-2) & \cdot(-4) \cdots(-(p-1)) \\
& \equiv(-1)^{\frac{p-1}{2}} \cdot 2 \cdot 4 \cdots(p-1) \quad(\bmod p)
\end{aligned}
$$

A combination of the two above congruences yields

$$
\begin{aligned}
1^{2} 3^{2} 5^{2} \cdots(p-2)^{2} \equiv(-1)^{\frac{p-1}{2}}(p-1)! & \stackrel{\text { Wilson }}{\equiv}(-1)^{\frac{p-1}{2}}(-1) \\
& \equiv(-1)^{\frac{p+1}{2}} \quad(\bmod p)
\end{aligned}
$$

A Chinese Problem

The Chinese cook problem

In some looting, 17 pirates acquire a treasure of gold pieces. They decide to share the treasure and give the remainder to their Chinese cook. This way, the cook got 3 gold pieces.

Later, at a naval battle, 6 of the pirates were killed and the remaining pirates decided to re-share the treasure in the same way. Now, the cook got 4 gold pieces.

Later still, they had a shipwreck and only six of the original pirates (plus the cook) survived. They re-shared the treasure in the same way. Now, the Chinese cook got 5 gold pieces.

While on shore, the cook poisoned the crew and got the whole treasure for himself. What is the minimum number of gold pieces that the Chinese cook has?

The Chinese cook problem - Answer

Let $x>0$ be the total number of gold pieces of the treasure. The original sharing implies that

$$
\begin{equation*}
x \equiv 3 \quad(\bmod 17) \tag{7}
\end{equation*}
$$

the second one that

$$
\begin{equation*}
x \equiv 4 \quad(\bmod 11) \tag{8}
\end{equation*}
$$

and the last one that

$$
\begin{equation*}
x \equiv 5 \quad(\bmod 6) \tag{9}
\end{equation*}
$$

Since 17, 11 and 6 are pairwise co-prime, the Chinese Remainder Theorem implies that the above system has a unique solution modulo $17 \cdot 11 \cdot 6=1122$.

The Chinese cook problem - Answer

From (7), we get that

$$
x=3+17 \alpha, \alpha \in \mathbb{Z}
$$

We combine the above with (8) and get that

$$
\begin{aligned}
3+17 \alpha \equiv 4 \quad(\bmod 11) & \Longleftrightarrow \alpha \equiv 2 \quad(\bmod 11) \\
& \Longleftrightarrow \alpha=2+11 \beta, \beta \in \mathbb{Z}
\end{aligned}
$$

It follows that

$$
x=3+17(2+11 \beta)=37+187 \beta, \beta \in \mathbb{Z}
$$

The Chinese cook problem - Answer

We combine the latter expression for x with (9) and get

$$
\begin{aligned}
37+187 \beta \equiv 5(\bmod 6) & \Longleftrightarrow \beta \equiv 4(\bmod 6) \\
& \Longleftrightarrow \beta=4+6 \gamma, \gamma \in \mathbb{Z} .
\end{aligned}
$$

It follows that

$$
x=37+187(4+6 \gamma)=785+1122 \gamma, \gamma \in \mathbb{Z} .
$$

We conclude that the cook has at least 785 gold pieces.

The Chinese cook problem

Exercise

Solve the Chinese cook problem with the other method for solving similar problems (the one that derives from the proof of the Chinese Remainder Theorem).

Stay home, stay safe!

