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ANSWERS OF THE 3RD SET



Exercise 1

Exercise
Find 13232741 (mod 8).

Answer
We have that 13 ≡ 5 (mod 8) and that 27 ≡ 3 (mod 8).
Moreover, given that φ(8) = 4, Euler’s theorem implies

1323 ≡ 523 ≡ 54·5+3 ≡ (54)553 ≡ 15125 ≡ 5 (mod 8)

and

2741 ≡ 34·10+1 ≡ (34)1031 ≡ 1103 ≡ 3 (mod 8).

It follows that 13232741 ≡ 5 · 3 ≡ 15 ≡ 7 (mod 8).
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Exercise 2

Exercise
Prove that 7 | 111333 + 333111.

Answer
We have that 111 ≡ −1 (mod 7) and 333 ≡ 4 (mod 7).
Moreover, Fermat’s theorem implies 46 ≡ 1 (mod 7). It
follows that

333111 ≡ 46·18+3 ≡ (46)1843 ≡ 118 · 64 ≡ 1 (mod 7),

hence

111333 + 333111 ≡ (−1)333 + 1 ≡ −1+ 1 ≡ 0 (mod 7).

The result follows.
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Exercise 3

Exercise
Prove that (−13)n+1 ≡ (−13)n + (−13)n−1 (mod 181), for
n ≥ 1.

Answer
First, for n = 1, (−13)2 ≡ 169 (mod 181), and
(−13)1 + (−13)0 ≡ −13+ 1 ≡ 169 (mod 181). In other words,
the statement holds for n = 1.

Now, assume that the statement holds for n = k.

For n = k+ 1, we have that

(−13)k+2 I.H.≡ (−13)(−13)k+1 ≡ (−13)[(−13)k + (−13)k−1]
≡ (−13)k+1 + (−13)k (mod 181).
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Exercise 4

Exercise
Find the residue of 44444444 divided by 9.

Answer
We easily see that the euclidean division between 4444 and 9
yields

4444 = 493 · 9+ 7,

that is, 4444 ≡ 7 (mod 9). Moreover, since (7, 9) = 1, Euler’s
theorem implies that 7φ(9) = 76 ≡ 1 (mod 9). Now, we
compute

44444444 ≡ 7440·6+4 ≡ (76)44074 ≡ 1440 · 492 ≡ 42

≡ 16 ≡ 7 (mod 9).

5/24



Exercise 7

Exercise
Let m,n ∈ Z, such that (m,n) = 1. Show that

mφ(n) + nφ(m) ≡ 1 (mod mn).
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Exercise 7

Answer
The desired result is equivalent to mn | mφ(n) + nφ(m) − 1.
Since (m,n) = 1, the latter is equivalent to

m | mφ(n) + nφ(m) − 1 and n | mφ(n) + nφ(m) − 1.

Furthermore, again because (m,n) = 1, we get

mφ(n) + nφ(m) m|mφ(n)

≡ nφ(m) Euler≡ 1 (mod m),

or, equivalently m | mφ(n) + nφ(m) − 1. Similarly,
n | mφ(n) + nφ(m) − 1.
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Exercise 8

Exercise
Let p,q be distinct primes such that

ap ≡ a (mod q) and aq ≡ a (mod p).

Show that apq ≡ a (mod pq).

Answer
We have that

apq ≡ (ap)q
ap≡a (mod q)

≡ aq Fermat≡ a (mod q).

Similarly, apq ≡ a (mod p). In other words both p and q
divide apq − a, that is, since (p,q) = 1, pq | apq − a, which is
equivalent to the desired result.
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Exercise 9

Exercise
Solve the following congruences:

1. 34x ≡ 60 (mod 98),
2. 255x ≡ 221 (mod 391),
3. −671x ≡ 121 (mod 737).
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Exercise 9 - Answer - Item 1

We will solve this congruence using the euclidean algorithm
explicitly. First, we use the euclidean algorithm to find
whether we have a solution.

98 = 2 · 34+ 30 (1)
34 = 30+ 4 (2)
30 = 7 · 4+ 2 (3)
4 = 2 · 2+ 0

It follows that (98, 34) = 2. In addition, 60 = 30 · 2, that is, we
have 2 solutions mod 98 and if x0 is one of them, the other
will be x0 + 98

2 = x0 + 49. Now, the euclidean algorithm yields:

2 (3)= 30− 7 · 4 (2)
= 30− 7(34− 30) = −7 · 34+ 8 · 30

(1)
= −7 · 34+ 8(98− 2 · 34) = 8 · 98− 23 · 34. 10/24



Exercise 9 - Answer - Item 1

We take this expression modulo 98 and get

− 23 · 34 ≡ 2 (mod 98)
⇒34(−23 · 30) ≡ 2 · 30 (mod 98)
⇒34 · 94 ≡ 60 (mod 98).

It follows that the two solutions are x0 ≡ 94 (mod 98) and
x1 ≡ 45 (mod 98).
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Exercise 9 - Answer - Item 2

We easily see that (255, 391) = 17 | 221. It follows that we have
17 solutions modulo 391. Also, 255x ≡ 221
(mod 391) ⇐⇒ 15x ≡ 13 (mod 23). Moreover,

23 = 15+ 8 (4)
15 = 8+ 7 (5)
8 = 7+ 1, (6)

that is,

1 (6)= 8−7 (5)= 8−(15−8) = −15+2·8 (4)
= −15+2(23−15) = 2·23−3·15.
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Exercise 9 - Answer - Item 2

From the latter, we get

15x ≡ 13 (mod 23) ⇐⇒ x ≡ 13 · (−3) ≡ 7 (mod 23).

It follows that the solutions of the original congruence are the
numbers mod 391 that are ≡ 7 (mod 23), i.e.,

7, 7+ 23, 7+ 2 · 23, . . . , 7+ 16 · 23.
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Exercise 9 - Answer - Item 3

First, note that the congruence can be rewritten as

66x ≡ 121 (mod 737).

Like in the previous case, we have (66, 737) = 11 | 121, thus we
have 11 solutions modulo 737, that are the solutions of 6x ≡ 11
(mod 67). We compute that x ≡ 13 (mod 67). It follows that
the solutions of the original congruence are

13, 13+ 67, . . . , 13+ 10 · 67.
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Exercise 10

Exercise
Find all the numbers n > 0, such that n13 ≡ n (mod 1365).
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Exercise 10 - Answer

We will show that n13 ≡ n (mod 1365) for every n > 0. Take
some n > 0. First, notice that 1365 = 3 · 5 · 7 · 13. It follows that
it suffices to prove that 3 | n13 − n, 5 | n13 − n, 7 | n13 − n and
13 | n13 − n.

• Fermat’s theorem implies n3 ≡ n (mod 3). It follows that

n13 ≡ n3·4+1 ≡ (n3)4n ≡ n4n ≡ n3n2 ≡ n3 ≡ n (mod 3),

that is, 3 | n13 − n.
• Fermat’s theorem implies n5 ≡ n (mod 5). It follows that

n13 ≡ n5·2+3 ≡ (n5)2n3 ≡ n2n3 ≡ n5 ≡ n (mod 5),

that is, 5 | n13 − n.
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Exercise 10 - Answer

• Fermat’s theorem implies n7 ≡ n (mod 7). It follows that

n13 ≡ n7+6 ≡ n7n6 ≡ n · n6 ≡ n7 ≡ n (mod 7),

that is, 7 | n13 − n.
• Fermat’s theorem implies n13 ≡ n (mod 13), that is,
13 | n13 − n.

This concludes the proof.
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Exercise 11

Exercise
Let p be an odd prime. Show that

123252 · · · (p− 2)2 ≡ (−1)(p+1)/2 (mod p).
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Exercise 11 - Answer

We have that

123252 · · · (p− 2)2 = (1 · 3 · · · (p− 2))(1 · 3 · · · (p− 2)).

However, since p is odd, we have that, for i odd, p− i is even,
while i ≡ −(p− i) (mod p). It follows that

1 · 3 · · · (p− 2) ≡ (−2) · (−4) · · · (−(p− 1))

≡ (−1)
p−1
2 · 2 · 4 · · · (p− 1) (mod p).

A combination of the two above congruences yields

123252 · · · (p− 2)2 ≡ (−1)
p−1
2 (p− 1)! Wilson≡ (−1)

p−1
2 (−1)

≡ (−1)
p+1
2 (mod p).
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A CHINESE PROBLEM



The Chinese cook problem

In some looting, 17 pirates acquire a treasure of gold pieces.
They decide to share the treasure and give the remainder to
their Chinese cook. This way, the cook got 3 gold pieces.

Later, at a naval battle, 6 of the pirates were killed and the
remaining pirates decided to re-share the treasure in the
same way. Now, the cook got 4 gold pieces.

Later still, they had a shipwreck and only six of the original
pirates (plus the cook) survived. They re-shared the treasure
in the same way. Now, the Chinese cook got 5 gold pieces.

While on shore, the cook poisoned the crew and got the
whole treasure for himself. What is the minimum number of
gold pieces that the Chinese cook has?
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The Chinese cook problem - Answer

Let x > 0 be the total number of gold pieces of the treasure.
The original sharing implies that

x ≡ 3 (mod 17), (7)

the second one that

x ≡ 4 (mod 11) (8)

and the last one that

x ≡ 5 (mod 6). (9)

Since 17, 11 and 6 are pairwise co-prime, the Chinese
Remainder Theorem implies that the above system has a
unique solution modulo 17 · 11 · 6 = 1122.
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The Chinese cook problem - Answer

From (7), we get that

x = 3+ 17α, α ∈ Z.

We combine the above with (8) and get that

3+ 17α ≡ 4 (mod 11) ⇐⇒ α ≡ 2 (mod 11)
⇐⇒ α = 2+ 11β, β ∈ Z.

It follows that

x = 3+ 17(2+ 11β) = 37+ 187β, β ∈ Z.
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The Chinese cook problem - Answer

We combine the latter expression for x with (9) and get

37+ 187β ≡ 5 (mod 6) ⇐⇒ β ≡ 4 (mod 6)
⇐⇒ β = 4+ 6γ, γ ∈ Z.

It follows that

x = 37+ 187(4+ 6γ) = 785+ 1122γ, γ ∈ Z.

We conclude that the cook has at least 785 gold pieces.
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The Chinese cook problem

Exercise
Solve the Chinese cook problem with the other method for
solving similar problems (the one that derives from the proof
of the Chinese Remainder Theorem).
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Stay home, stay safe!
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