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SYSTEMS OF LINEAR CONGRUENCES



Introduction

Let ai,bi ∈ Z and ni > 1 be fixed numbers for i = 1, . . . , k. A set
of congruences of the form

a1x ≡ b1 (mod n1),
...

akx ≡ bk (mod nk),
(1)

where x varies, is called a system of linear congruences. Some
x0 ∈ Z that satisfies all of the congruences of (1) is a solution
of the system.

In this lecture, our aim is to characterize whether (1) is
solvable or not and, in the former case, explicitly find its
solutions.
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Some examples

Example
Take the system 3x ≡ −1 (mod 10),

2x ≡ 1 (mod 5).

One easily checks that x = 3 is a solution of the system.
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Some examples

Example
Take the system x ≡ 1 (mod 6),

x ≡ 2 (mod 4).

This system is impossible, since the first congruence’s
solutions are odd numbers and the second one’s even.

Remark
Clearly a system can have a solution only if each one of its
congruences is solvable. However, the inverse is not true, as
the above example demonstrates.
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Some definitions

Definition
We say that some a (mod c) is a solution of a system of
linear congruences, if all x ∈ ā (where ā ∈ Zc) are solutions
of that system.

Definition
Two systems of linear congruences are called equivalent
(ισοδύναμα), if they both share the same set of solutions.
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The Chinese Remainder Theorem

The main result of this lecture is the following theorem known
as the Chinese Remainder Theorem (Κινέζικο Θεώρημα
Υπολοίπων).

Theorem (Chinese Remainder Theorem)
Let b1, . . . ,bk ∈ Z and n1, . . . ,nk > 1 be such that (ni,nj) = 1
for all i ̸= j. Then the system

x ≡ b1 (mod n1),
...

x ≡ bk (mod nk),
(2)

has a unique solution (mod n1 · · ·nk).
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Proof

The proof is comprised by 3 parts: (a) find a solution x0, (b)
show that every x′ ≡ x0 (mod n1 · · ·nk) is also a solution and
(c) show that every solution is also ≡ x0 (mod n1 · · ·nk).

Set Nj :=
∏k

i=1 ni
nj . Since n1, . . . ,nk are pairwise co-prime, we

have that (Nj,nj) = 1 for all j. It follows that, for every j, Nj is
invertible (mod nj). Let xj ≡ N−1

j (mod nj). Now, set

x0 = b1N1x1 + · · ·+ bkNkxk.

Next, notice that, for every i ̸= j, ni | Nj, that is, bjNjxj ≡ 0
(mod ni). It follows that for every i,

x0 ≡ biNixi ≡ bi (mod ni),

in other words x0 is a solution of the System (2). This
concludes Part (a).

7/17



Proof

Next, let x′ ≡ x0 (mod n1 · · ·nk). Then, clearly, for every i, we
have that x′ ≡ x0 ≡ bi (mod ni). This concludes Part (b).

Finally, suppose that y is a solution of the system. Then, for
every i, we have that

y ≡ bi ≡ x0 (mod ni).

It follows that, for every i, ni | y− x0. Since n1, . . . ,nk are
pairwise co-prime, this implies that n1 · · ·nk | y− x0, that is,
y ≡ x0 (mod n1 · · ·nk). The proof is now complete.
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A method

A closer look at the proof of the Chinese Remainder Theorem
reveals a method for solving this kind of systems.

For example, lets solve the system
x ≡ 2 (mod 5),
x ≡ 3 (mod 7),
x ≡ 4 (mod 11).

Since 5, 7, 11 are pairvise co-prime, the Chinese Remainder
Theorem implies that the above system has a unique solution
modulo 5 · 7 · 11 = 385.
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A method

Using the notation of the proof, we compute

N1 = 7 · 11 = 77, N2 = 5 · 11 = 55, N3 = 5 · 7 = 35.

Now, for i = 1, 2, 3, set xi ≡ N−1
i (mod ni). We compute

x1 ≡ 3 (mod 5), x2 ≡ 6 (mod 7), x3 ≡ 6 (mod 11).

It follows that the solution of the system is

x ≡ 77 · 3 · 2+ 55 · 6 · 3+ 35 · 6 · 4 ≡ 2292 ≡ 367 (mod 385).

10/17



Generalizing the Chinese Remainder Theorem

The following theorem generalizes the Chinese Remainder
Theorem.
Theorem
The system 

x ≡ b1 (mod n1),
...

x ≡ bk (mod nk),
(3)

is solvable if and only if (ni,nj) | bi − bj, for every i ̸= j. In this
case, (3) has a unique solution (mod [n1, . . . ,nk]).

Proof.
Omitted.
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An example

Example
Solve the system x ≡ 1 (mod 15),

x ≡ 7 (mod 18).
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An example

The last theorem implies that the system has a unique
solution (mod 90). Let x0 be a solution. The first congruence
implies

x0 = 1+ 15k, k ∈ Z.

Now, the second congruence yields

1+ 15k ≡ 7 (mod 18)
⇐⇒ 15k ≡ 6 (mod 18)
⇐⇒ 5k ≡ 2 (mod 6)
⇐⇒ k ≡ 4 (mod 6)
⇐⇒ k = 4+ 6ℓ, ℓ ∈ Z.

It follows that x0 = 1+ 15k = 1+ 15(4+ 6ℓ) = 61+ 90ℓ, ℓ ∈ Z.
In other words x0 ≡ 61 (mod 90).
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Another example

Example
Solve the system 

2x ≡ 4 (mod 5),
x ≡ −27 (mod 22),
3x ≡ 30 (mod 39).
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Another example

First, we will simplify the three congruences, in order to get an
equivalent system in the form of the statement of the Chinese
Remainder Theorem.

Towards this end, we solve the first congruence, using known
methods, and we get

x ≡ 2 (mod 5). (4)

The second one can be rewritten as

x ≡ 17 (mod 22). (5)

The third one does not have a unique solution modulo 39 (in
fact it has three of them). Nonetheless, it is equivalent to the
congruence

x ≡ 10 (mod 13). (6)
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Another example

Now the Chinese Remainder Theorem implies that the system
has a unique solution (mod 1430). Let x be a solution.
Congruence (4) implies

x = 2+ 5a,a ∈ Z.

We replace this in (5) and get

2+ 5a ≡ 17 (mod 22) ⇐⇒ a ≡ 3 (mod 22).

It follows that a = 3+ 22b, that is,

x = 2+ 5(3+ 22b) = 17+ 110b, b ∈ Z.
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Another example

Finally, we replace the latter in (6) and get

17+ 110b ≡ 10 (mod 13) ⇐⇒ b ≡ 1 (mod 13).

It follows that b = 1+ 13c, that is,

x = 17+ 110(1+ 13c) = 127+ 1430c, c ∈ Z.

In other words, we have shown that

x ≡ 127 (mod 1430)

is the solution of the system.
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Stay home, stay safe!
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