MEM204-NuMBER TheORY

2nd virtual lecture

Giorgos Kapetanakis
Spring semester 2019-20-01/04/2020
University of Crete

Linear Congruences

Introduction

Let $a, b \in \mathbb{Z}$ and $n>1$ be fixed numbers. A congruence of the form

$$
\begin{equation*}
a x \equiv b \quad(\bmod n) \tag{1}
\end{equation*}
$$

where x varies, is called a linear congruence. Some x_{0} that satisfies (1) is a solution of the congruence. Clearly, if x_{0} is a solution of (1), so is every $x \in \overline{x_{0}}$.

In this lecture, our aim is to characterize whether (1) has a solution or not and, in the former case, how many of them are there (in \mathbb{Z}_{n}).

Some examples

Take the congruence

$$
2 x \equiv 3 \quad(\bmod 7)
$$

We have that
$\cdot 2 \cdot 0 \equiv 0 \not \equiv 3(\bmod 7)$,

- $2 \cdot 1 \equiv 2 \not \equiv 3(\bmod 7)$,
- $2 \cdot 2 \equiv 4 \not \equiv 3(\bmod 7)$,
$\cdot 2 \cdot 3 \equiv 6 \not \equiv 3(\bmod 7)$,
$\cdot 2 \cdot 4 \equiv 1 \not \equiv 3(\bmod 7)$,
- $2 \cdot 5 \equiv 3(\bmod 7)$,
$\cdot 2 \cdot 6 \equiv 5 \not \equiv 3(\bmod 7)$,
in other words $\bar{x}=\overline{5}$ is the only solution of the congruence.

Some examples

Take the congruence

$$
2 x \equiv 4 \quad(\bmod 6)
$$

We have that

- $2 \cdot 0 \equiv 0 \not \equiv 4(\bmod 6)$,
$\cdot 2 \cdot 1 \equiv 2 \not \equiv 4(\bmod 6)$,
- $2 \cdot 2 \equiv 4(\bmod 6)$,
$\cdot 2 \cdot 3 \equiv 0 \not \equiv 4(\bmod 6)$,
$\cdot 2 \cdot 4 \equiv 2 \not \equiv 4(\bmod 6)$,
- $2 \cdot 5 \equiv 4(\bmod 6)$,
in other words, here we have two solutions, $\bar{x}=\overline{2}$ and $\bar{x}=\overline{5}$.

Some examples

Take the congruence

$$
2 x \equiv 5 \quad(\bmod 6)
$$

We have that

- $2 \cdot 0 \equiv 0 \not \equiv 5(\bmod 6)$,
$\cdot 2 \cdot 1 \equiv 2 \not \equiv 5(\bmod 6)$,
- $2 \cdot 2 \equiv 4 \not \equiv 5(\bmod 6)$
$\cdot 2 \cdot 3 \equiv 0 \not \equiv 5(\bmod 6)$,
$\cdot 2 \cdot 4 \equiv 2 \not \equiv 5(\bmod 6)$,
- $2 \cdot 5 \equiv 4 \not \equiv 5(\bmod 6)$,
in other words, here we have no solutions at all!

One solution

From the above examples, we see that a linear congruence may have one, multiple or no solutions. The following proposition characterizes the first case.

Proposition

If $(a, n)=1$, then the congruence $a x \equiv b(\bmod n)$ has exactly one solution.

Proof.

Since $(a, n)=1$, we have that a is invertible modulo n. Let c be its inverse modulo n. We have that:

$$
a x \equiv b \quad(\bmod n) \Rightarrow x \equiv b c \quad(\bmod n)
$$

A method

The proof of the above proposition, also suggests a method for solving these congruences, as we demonstrate below:

Example

We will solve

$$
\begin{equation*}
137 x \equiv 4 \quad(\bmod 102) \tag{2}
\end{equation*}
$$

First, since $137 \equiv 35$ (mod 102), we can simplify (2) as

$$
35 x \equiv 4 \quad(\bmod 102)
$$

Then, with the help of the euclidean algorithm, we compute $\overline{35}{ }^{-1}=\overline{35}$. We multiply both sides of the congruence by $\overline{35}$ and we get

$$
x \equiv 4 \cdot 35 \equiv 140 \equiv 38 \quad(\bmod 102)
$$

A method

Remark

There are multiple ways for finding the inverse (in addition to the euclidean algorithm). For example, you may use

- Euler's theorem ($\left.\bar{a}^{-1}=\bar{a}^{\varphi(n)-1}\right)$ or
- brute force.

Example

Use Euler's theorem to solve

$$
7 x \equiv 8 \quad(\bmod 30)
$$

What about the case $(a, n) \neq 1$?

A complete characterization

Theorem

Let $d=(a, n)$. The congruence

$$
\begin{equation*}
a x \equiv b \quad(\bmod n) \tag{3}
\end{equation*}
$$

is solvable if and only if $d \mid b$. In this case, (3) has exactly d solutions and, if x_{0} is one of them, then the solutions are

$$
x \equiv x_{0}, x_{0}+\frac{n}{d}, x_{0}+2 \frac{n}{d}, \ldots, x_{0}+(d-1) \frac{n}{d}(\bmod n) .
$$

First, we focus on the existence statement.
(\Rightarrow) Suppose that x satisfies (3). Then

$$
n|a x-b \Rightarrow \exists c: a x-b=c n \stackrel{d \mid a, n}{\Longrightarrow} d| b .
$$

(\Leftarrow) Suppose that $d \mid b$. Then x satisfies (3) iff it satisfies

$$
\begin{equation*}
\frac{a}{d} x \equiv \frac{b}{d} \quad\left(\bmod \frac{n}{d}\right) \tag{4}
\end{equation*}
$$

Now, since $\left(\frac{a}{d}, \frac{n}{d}\right)=1$, from previous proposition, we get that (4) is solvable. We have now established the existence statement.

Proof

Next, we focus on the second statement. Assume that $d \mid b$, that is (3) is solvable. Then x_{0} satisfies (3) iff it satisfies (4). However, (4) has a unique solution. This implies that all the solutions of (3) are of the form

$$
x_{0}+k \frac{n}{d}, k \in \mathbb{Z}
$$

Further, notice that

$$
\begin{aligned}
x_{0}+k_{1} \frac{n}{d} \equiv x_{0}+k_{2} \frac{n}{d} \quad(\bmod n) & \Longleftrightarrow n \left\lvert\,\left(k_{1}-k_{2}\right) \frac{n}{d}\right. \\
& \Longleftrightarrow d \mid\left(k_{1}-k_{2}\right)
\end{aligned} \Longleftrightarrow k_{1} \equiv k_{2} \quad(\bmod d) .
$$

The result follows.

An example

The congruence

$$
24 x \equiv 22 \quad(\bmod 33)
$$

is not solvable, since $(24,33)=3 \nmid 22$.

Another example

We will find all the solutions of

$$
\begin{equation*}
2086 x \equiv-1624 \quad(\bmod 1729) \tag{5}
\end{equation*}
$$

First, note that, in $\mathbb{Z}_{1729}, \overline{2086}=\overline{357}$ and $\overline{-1624}=\overline{105}$, so (5) is equivalent to

$$
357 x \equiv 105 \quad(\bmod 1729)
$$

Next, we use the euclidean algorithm yields $(357,1729)=7$. However, $105=7 \cdot 15$. This implies that (5) has exactly 7 solutions. Our next step is to identify one solution and, based on this, find the other 6 .

Another example (cont.)

Further, the euclidean algorithm yields

$$
7=19 \cdot 1729-92 \cdot 357
$$

This implies

$$
\begin{aligned}
-92 \cdot 357 & \equiv 7 \quad(\bmod 1729) \\
\Rightarrow(-92 \cdot 15) \cdot 357 & \equiv 7 \cdot 15 \quad(\bmod 1729) \\
\Rightarrow 357 \cdot 349 & \equiv 105 \quad(\bmod 1729) .
\end{aligned}
$$

It follows that $\overline{349}$ is a solution of (5). If follows that all the solutions of (5) are

$$
x \equiv 349,596,843,1090,1337,1584,102 \quad(\bmod 1729)
$$

Stay home, stay safe!

