MEM204-NuMBER THEORY

1st virtual lecture

Giorgos Kapetanakis
Spring semester 2019-20-27/03/2020
University of Crete

2ND SET - ANSWERS

Exercise 2

Exercise

Show that for every $n \geq 1, \mu(n) \mu(n+1) \mu(n+2) \mu(n+3)=0$.

Answer

The result follows immediately as a combination of the following facts:

1. Let $0 \leq r \leq 3$ be the remainder of the euclidean division of $n+3$ by 4 . Then $4 \mid n+3-r$ and $n+3-r=n, n+1, n+2$ or $n+3$.
2. If $4 \mid k$, then k is not square-free, i.e., $\mu(k)=0$.

Exercise 3

Exercise

Let p be a prime. Show that

$$
\sum_{d \mid n} \mu(d) \mu(\operatorname{gcd}(p, d))= \begin{cases}1, & \text { if } n=1, \\ 2, & \text { if } n=p^{a}, a \geq 1 \\ 0, & \text { otherwise } .\end{cases}
$$

Exercise 3

We consider the following cases:

- If $n=1$, then, clearly,

$$
\sum_{d \mid n} \mu(d) \mu(\operatorname{gcd}(p, d))=1
$$

- If $n>1$ and $p \nmid n$, then $\forall d \mid n$, we have that $\operatorname{gcd}(p, d)=1 \Rightarrow \mu(\operatorname{gcd}(p, d))=1$. It follows that

$$
\sum_{d \mid n} \mu(d) \mu(\operatorname{gcd}(p, d))=\sum_{d \mid n} \mu(d)=0
$$

Exercise 3

- If $n>1, p \mid n$ and $n \neq p^{a}$. Then we write $n=p^{b} m$, where $m>1, b \geq 1$ and $(m, p)=1$. It follows that

$$
\begin{aligned}
& \sum_{d \mid n} \mu(d) \mu(\operatorname{gcd}(p, d)) \\
= & \sum_{d \mid n, p \nmid d} \mu(d) \mu(\operatorname{gcd}(p, d))+\sum_{d|n, p| d} \mu(d) \mu(\operatorname{gcd}(p, d)) \\
= & \sum_{d \mid m} \mu(d)+\mu(p)^{2} \sum_{d \mid m} \mu(d)=0 .
\end{aligned}
$$

Exercise 3

- If $n=p^{a}, a \geq 1$, then

$$
\begin{aligned}
\sum_{d \mid n} \mu(d) \mu(\operatorname{gcd}(p, d)) & =\sum_{i=0}^{a} \mu\left(p^{i}\right) \mu\left(\operatorname{gcd}\left(p, p^{i}\right)\right) \\
& =\mu(1)^{2}+\mu(p)^{2}+\sum_{i=2}^{a} \mu\left(p^{i}\right) \mu(p) \\
& =1^{2}+(-1)^{2}+0=2
\end{aligned}
$$

Exercise 4

Exercise

Show that for every $n>2, \varphi(n)$ is even.

Answer

We take two cases:

1. If $n=2^{a}$, where $a \geq 2$. Then $\varphi(n)=2^{a-1}$, where $a-1 \geq 1$, so $\varphi(n)$ is even.
2. If n is divided by an odd prime p, then we easily see that $p-1 \mid \varphi(n)$. Thus, since $p-1$ is even, so is $\varphi(n)$.

Exercise 5

Exercise

How many numbers $1 \leq k \leq 3600$ have a non-trivial common factor with 3600 ?

Answer

First, notice that $3600=2^{4} 3^{2} 5^{2}$. Also, in total, we have 3600 numbers in the interval $1 \leq k \leq 3600$. Among them, there are
$\varphi(3600)=2^{4-1} 3^{2-1} 5^{2-1}(2-1)(3-1)(5-1)=2^{3} \cdot 3 \cdot 5 \cdot 1 \cdot 2 \cdot 4=960$
numbers that are co-prime to 3600 . It follows that the remaining $3600-960=2640$ numbers in the interval have a non-trivial common factor with 3600.

Exercise 6

Exercise

Show that $m|n \Rightarrow \varphi(m)| \varphi(n)$.

Exercise 6

Since $m \mid n$, we can assume that if

$$
m=p_{1}^{m_{1}} \cdots p_{k}^{m_{k}},
$$

where $m_{i} \geq 1$, is the prime factorization of m, then the prime factorization of n is of the form

$$
n=p_{1}^{n_{1}} \cdots p_{k}^{n_{k}} p_{k+1}^{n_{k+1}} \cdots p_{\ell}^{n_{\ell}},
$$

where $n_{i} \geq m_{i}$, for $1 \leq i \leq k$ and $n_{i} \geq 1$, for $k+1 \leq i \leq \ell$.
It follows that

$$
\varphi(m)=p_{1}^{m_{1}-1} \cdots p_{k}^{m_{k}-1}\left(p_{1}-1\right) \cdots\left(p_{k}-1\right)
$$

and

$$
\varphi(n)=p_{1}^{n_{1}-1} \cdots p_{\ell}^{n_{\ell}-1}\left(p_{1}-1\right) \cdots\left(p_{\ell}-1\right) .
$$

The result follows immediately from the fact that $n_{i} \geq m_{i}$, for $1 \leq i \leq k$.

Exercise 7

Exercise

Show that if m and n have the same prime factors (possibly in different powers), then $n \varphi(m)=m \varphi(n)$.

Answer

Let $m=p_{1}^{m_{1}} \cdots p_{k}^{m_{k}}$ and $n=p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}$, where $n_{i}, m_{i} \geq 1$ be the prime factorizations of m and n. Then

$$
\begin{aligned}
n \varphi(m) & =p_{1}^{n_{1}} \cdots p_{k}^{n_{k}} p_{1}^{m_{1}-1} \cdots p_{k}^{m_{k}-1}\left(p_{1}-1\right) \cdots\left(p_{k}-1\right) \\
& =p_{1}^{m_{1}} \cdots p_{k}^{m_{k}} p_{1}^{n_{1}-1} \cdots p_{k}^{n_{k}-1}\left(p_{1}-1\right) \cdots\left(p_{k}-1\right) \\
& =m \varphi(n) .
\end{aligned}
$$

Exercise 8

Exercise

Find all n such that $\varphi(n)=\frac{n}{2}$.

Exercise 8

Let $n=p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}$, where $n_{i} \geq 1$ be the prime factorization of n. Then $\varphi(n)=n / 2$ implies

$$
p_{1}^{n_{1}-1} \cdots p_{k}^{n_{k}-1}\left(p_{1}-1\right) \cdots\left(p_{k}-1\right)=\frac{p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}}{2}
$$

that is,

$$
2\left(p_{1}-1\right) \cdots\left(p_{k}-1\right)=p_{1} \cdots p_{k}
$$

The RHS of the above equation is square-free, so the same should hold for the RHS. However, this is only possible if
$\left(p_{1}-1\right) \cdots\left(p_{k}-1\right)=1$, i.e., if $n=2^{a}, a \geq 1$. Moreover, we easily verify that $\varphi\left(2^{a}\right)=2^{a-1}=\frac{2^{a}}{2}$. To sum up, $\varphi(n)=\frac{n}{2}$ if and only if $n=2^{a}$ for some $a \geq 1$.

Exercise 10

Exercise

Find all n such that $\sigma(n)=12$.

Answer

It is clear that $\sigma(n) \geq n+1 \Longleftrightarrow n \leq \sigma(n)-1$. It follows that it suffices to check the numbers $n \leq 11$. A quick computation reveals that in the interval $1 \leq n \leq 11$, only $n=6$ and $n=11$ satisfy $\sigma(n)=12$.

Exercise 11

Exercise

Find all n such that $T(n)=12$.

Exercise 11

Write $n=p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}$, where $p_{i} \neq p_{j}$ and $n_{i} \geq 1$. Then, we have that

$$
\tau(n)=\left(n_{1}+1\right) \cdots\left(n_{k}+1\right)
$$

W.l.o.g. assume that the numbers $\left(n_{1}+1\right), \ldots,\left(n_{k}+1\right)$ are in descending order. Then each of them is a divisor >1 of 12. Then we have the following options:

1. $n_{1}=11$.
2. $n_{1}=5, n_{2}=1$.
3. $n_{1}=3, n_{2}=2$.
4. $n_{1}=2, n_{2}=1, n_{3}=1$.

Exercise 11

It follows that $T(n)=12$ iff n is factorized into primes in one of the following ways

1. $n=p_{1}^{11}$,
2. $n=p_{1}^{5} p_{2}$,
3. $n=p_{1}^{3} p_{2}^{2}$ or
4. $n=p_{1}^{2} p_{2} p_{3}$,
where the numbers p_{1}, p_{2} and p_{3} are distinct primes.

Exercise 14

Exercise

If n is a perfect number, show that $\sum_{d \mid n} \frac{1}{d}=2$.

Answer

If n is perfect, then

$$
\begin{aligned}
\sigma(n)=2 n & \Rightarrow \sum_{d \mid n} d=2 n \Rightarrow \sum_{d \mid n} \frac{n}{d}=2 n \\
& \Rightarrow n\left(\sum_{d \mid n} \frac{1}{d}\right)=2 n \Rightarrow \sum_{d \mid n} \frac{1}{d}=2 .
\end{aligned}
$$

Stay home, stay safe!

