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1. ALGEBRAIC SETS, AFFINE VARIETIES, AND THE Z,ARISKI TOPOLOGY

List of topics:

(1) Algebraic sets
(2) Hilbert basis theorem
(3) Zariski topology

1.1. Algebraic sets. Fix a field k. Consider kY, the set of N-tuples in k.

Definition 1.1. An affine algebraic subset of kY is the common zero locus of a collection of
polynomials in k[z1,...,zN].
That is: Fix S C k[x1,...,znN] any subset. Then

V(S) ={p=(A1,..., n) €k | f(p) =0Vf e S}.

Ezample 1.2. (1) Lines in R?: V(y — ma — b) C R2.

(2) Rational points on a cone (arithmetic geometry): V(22 + y? — 22) C Q3
(3) All linear subspaces of k' are affine algebraic sets.
(4) V(det(x;j) — 1) = SL,(C) = {n x n matrices /C of det1} C cn’
(5) slh(R) = {($ y> ‘trace:O} C R2?*2
(6) P
(7)

z

6
7

Point in kV: {(a1,...,an)} =V(z1 —a1,..., 28 — an).
V(z,y) = (0,0) —V({x”+y,y"+17} )CR2

n€N230 -
Remark 1.3. S CT C k[xy,...,an] = V(S) D V(T).
1.2. Hilbert basis theorem.

Theorem 1.4 (Hilbert basis theorem). Every affine algebraic set in k™ can be defined by finitely
many polynomials.

Proof requires a lemma:
Lemma 1.5. Let {f/\})\eA C k[z1,...,zN] and let I C k[z1,...,xN] be the ideal generated by the
{f\hrea- Then V(S) = V(I).

V(I

Proof. We know V(S) D
9(p) = 0.
Take g € I, s0 g =r1f1 + -+ reft, where f; € S and r; € k[xy,...,2zN]. So
9(p) = ri(p)f1(p) + -+ re(p) fe(p) = 0
since fi(p) =0fori=1,...,t. Hence p € V(I). O
Proof of Theorem[1.] Take any S C k[z1,...,xzn], I = (S) ideal generated by S. We have V(S) =

V(I) by Lemma But every ideal in a polynomial ring in finitely many variables is finitely
generated. Hence

). Take p € V(S). We want to show that given any g € I, we have

V(8) =V({I) =V(g,...,91),
where g1,...,g; generate I. O
Remark 1.6 (Algebra black box). e R is Noetherian if every ideal is f.g.

e Thm: R Noetherian = R|[z] Noetherian.
o klzy,...,xNn_1][xN] = Ek[x1,...,zN], use induction.
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1.3. Zariski topology.

Definition 1.7 (topology). A topology on a set X is a collection of distinguished subsets, called

closed sets, satisfying:
(1) @ and X are closed.
(2) An arbitrary intersection of closed sets is closed.
(3) A finite union of closed sets is closed.

Example 1.8. (1) On R, the Euclidean topology.
(2) On R, cofinite: closed sets are finite sets, and R, &.

Definition 1.9 (Zariski topology). The Zariski topology on k% is defined as the topology whose

closed sets are affine algebraic sets.

1.3.1. Proof that affine algebraic sets form closed sets on a topology on k™.
(1) @ =V(1), kN = V(0).
(2) WTS: {V\} closed sets = [ cp Vi closed. Write V\ = V(). Then

Nv=Nva=v(Un)=v(>Xn).

AEA AEA

(3) WTS: Finite union of closed sets are closed. By induction, suffices to show V(f,...

V(g1,...,9s) is an algebraic set.
Note:

V(fi,oo s f)UV(g1,- o 05) = V({figiticqr...iy)-
je{1,...,s}
Proof on quiz.

Ezample 1.10. Zariski topology on k! is the cofinite topology. Since k[x] is a PID,

V =V((f1,..., ft)) = V(f) = {roots of f},
which is finite if f £ 0.

2. IDEALS, NULLSTELLENSATZ, AND THE COORDINATE RING

Today:

(1) ideal of V'

(2) Hilbert’s Nullstellensatz
(3) Regular functions

(4) coordinate ring

2.1. Ideal of an affine algebraic set. Affine algebraic subset of kV:
14 :V((flv 7ft)) C kN

Consider the map

{ideals in k[z1,...,zn]} — {(affine) algebraic subsets of k:N}
I— V(I).
Note 2.1. e This map is order reversing: [ C J = V(J) CV(I).

e Surjective.
e Not injective: e.g., (z,y), (372,3/2).

Remark 2.2 (algebra). R commutative ring, I C R any ideal.
Definition 2.3. The radical of I is the ideal
RadI:{fGR‘fNEIforsomeN}.

7ft)U
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e Sanity check: show this is an ideal.
e [ is radical if Rad I = 1.

Lemma 2.4. Let I C klzy,...,zN]. Then
V(I) =V(Rad ).

Proof. I CRadI = V(RadI) C V(I).
So take p € V(I) C kV. Need to show Vf € Rad I that f(p) = 0. We have f € RadI = fV ¢
Rad I, so

(F@)" =N =0 = f@p)=0. O
Now is the map I — V(I) injective?

Ezample 2.5. (2% 4 y*) € R[z, y].

V(z,y) = (0,0) = V(2% + y?) C R2
We have 2 radical ideals defining the same algebraic set.
Definition 2.6. Let V C k" be an affine algebraic set. The ideal of V is

(V) ={f€klz,...,zn] | f(p)) =0VYpe V}.

Note 2.7. I(V) is a radical ideal, and is the largest ideal defining V.
Proposition 2.8. V = V(I(V)).

Proof. Say V= V(I). Since I CI(V), we have V(I(V)) CV(I) = V.
Take p € V. Need to show Vg € I(V) that g(p) = 0, which is true by definition of I(V). O

This shows that I is a right inverse of V.

Ezxample 2.9. Going back to our previous example, we should really view V (m2 + y2) in C? rather
than R?:

V (2% + %) = V((z +iy)(z — iy)) = V(z +iy) UV(z — iy).
2.2. Hilbert’s Nullstellensatz.

Theorem 2.10 (Hilbert’s Nullstellensatz). Let k = k (i.e., assume k is algebraically closed). There
s an order-reversing bijection

{radical ideals in k[z1,...,xN]} < {affine algebraic subsets of k™ }
I V(I)
(V) +— V.

Remark 2.11. Points in affine space &V correspond to maximal ideals in the polynomial ring
k[l‘l, oo ,.%'N].

2.3. Irreducible spaces.

Definition 2.12. A topological space X is irreducible if X is not the union of two nonempty proper
closed sets.

Example 2.13. The cofinite topology on R is irreducible.
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2.4. Sept. 10 warmup.

e Draw V(zy, rz) C R3.
e Prove Lemma: For I,J C k[zy,...,xN],

V(INJ)=V()UuV(J).

Proof 1. INJ CI,J = V(I)UV(J) CV(INJ)
Take p e V(INJ). Need p € V(I) or V(J). If p ¢ V(I), then 3f € I such that f(p) # 0.
Now: Vg € J, look at fg € I.J. Because p € V(I NJ),

fp)g(p) = (f9)(p) =0,
hence g(p) =0 and p € V(J). O

Proof 2. V(INJ) =V (\/ﬁ) —V (m) — V(IJ) = V(1) UV(J). 0

2.5. Some commutative algebra. R commutative ring.

e [, J radical = I N J radical.
e p C Ris prime <= R/pis a domain < if fg € p, then f €por g € p.
e If R is Noetherian, I radical, then

uniquely, where the p; are prime (irredundant).

2.6. Review of Hilbert’s Nullstellensatz. The mappings I and V are mutually inverse, giving
us an order-reversing bijection

{affine algebraic subsets of k¥ } # {radical ideals of k[z1,...,zN]}.
kN +—0
@ +— (1) =k[z1,...,xN]
{points} «— {maximal ideals}
(ai,...,an) «— (z1 —a1,...,cN —an)
{irreducible algebraic sets} <— Speck[z1,...,xn]| = {prime ideals}

2.7. Irreducible algebraic sets.

Definition 2.14. An algebraic set V' C kY is irreducible if it cannot be written as the union of
two proper algebraic sets contained in V. [If V=V, UV,, then V =V or V = V5]

FEzercise 2.15. V(I) is irreducible <= I is prime, where I is radical.

Observation 2.16. I C k[xy,...,zyN] radical (k not necessarily algebraically closed), write I =
p1 N ---Npg, where p; are prime (unique!).

V() =V(p1) U- - UV(pe)
are the (unique) irreducible components of V(I).
The point is:

Proposition 2.17. Every algebraic set in k™ is a union of its irreducible components.
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2.8. Aside on non-radical ideals. We also have V(1) NV(J) = V(I UJ). However, I U J is not
usually an ideal, and I 4 J is not necessarily radical.
Non-radical ideals lead into scheme theory:

V(y —2?) NV(y) = V(y —a?,y) = V(y,2°).
We should somehow keep track of the multiplicity.
3. REGULAR FUNCTIONS, REGULAR MAPS, AND CATEGORIES
3.1. Regular functions. Fix V C k" algebraic set, k = k.

Definition 3.1. A function V. — k is regular if it agrees with the restriction to V of some
polynomial function on the ambient k.

Proposition—Definition 3.2. The set of all regular functions on V' has a natural ring structure
(where addition and multiplication are the functional notions). This is the coordinate ring of V,
denoted k[V].

Ezample 3.3. On kN, k[kN] = k[z1,...,zN].

Remark 3.4. (1) k =k = k is infinite.
(2) If k is infinite, then there is no ambiguity in the word “polynomial”.

Ezample 3.5. Consider V(y — 2%) C R?. This is the set of all points (t,#?). The function “y”
outputs the y-coordinate (projection to y-axis), and “z?” is the same function in V.

Example 3.6. Consider V(zy — 1) C Q2. Is % regular?
Yes: % =z on V(zy —1).

Observation 3.7. The restriction map gives a natural ring surjection

Elxi,...,xN] — k[V]
p—> (p}v
whose kernel is I(V'). In particular,
~ ]{7[1'1, oo ,{L‘N}
E[V] = V)

3.2. Properties of the coordinate ring. The coordinate ring k[V] has the following properties:
(1) k[V] is a f.g. k-algebra generated by the images of x1,...,zN.
(2) reduced (the only nilpotent element is 0)
(3) domain <= V is irreducible.
(4) The maximal ideals of k[V] correspond to points of V (need k = k).

Note 3.8 (commutative algebra). Maximal ideals in k[V] = k[z1,...,2n]/I(V) correspond to max-
imal ideals in k[z1,...,2y] containing I(V'). By the Nullstellensatz, these correspond to points on
V.

3.3. Regular mappings.

Definition 3.9. Let V C k™ and W C k™ be affine algebraic sets. A regular mapping of affine
algebraic sets
p:V—W
is any mapping ¢ which agrees with a polynomial map ¥ on the ambient k" — k™:
v
x=(T1,...,2,) — (\Ill(x), .. .,\I/m(x)),

where ¥; are polynomials.
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Note 3.10. If W = k, then a regular map is a regular function.

Note 3.11. We can describe a regular map V AN 7 C k™ by giving regular functions @1, ..., pm €
E[V]:
pr— (21(0); - om(p)) € W C k™.
Ezample 3.12.
k— V(y—a®) Ck
t—s (t,t%)

is a regular map from k to V(y — z2).
The projection

V(y—2?) Ck* —k
(z,y) —
is the inverse to the map t — (¢, 12).
Definition 3.13. An isomorphism of affine algebraic sets is a reqular map V 25 W which has a
reqular map W >, V inverse: ¥ o ¢ = idy and @ oy = idy.

Ezample 3.14. Let Vi, Va C k™ be linear subspaces (defined by some collection of linear polynomi-
als). Then V; = V5 as algebraic sets <= dim V; = dim V5.

Ezample 3.15 (diagonal map). Give k™ x k™ coordinates 1, ..., Tn, Y1, - - Yn-
N Y
pr— (p,p)

Image is the “diagonal”
D=V(x1 —y1,...,Tn —yn) C k" x k™.

The map k™ 2D C k™ x k™ is an isomorphism of affine algebraic sets.

Ezample 3.16. X, Y C k™ algebraic sets. View X C k™ with coordinates x1,...,x, and Y C k"
with coordinates y1, ..., Yn.

K S kX kT
Ul Ul
XNY —— (X xY)nD
p—(p,p)

3.4. Category of affine algebraic sets. Key idea: The category of affine algebraic sets over
k =k is “the same” (anti-equivalence, duality) as the category of f.g. reduced k-algebras.

Point: Given a regular map V “5 W of affine algebraic sets, there is a naturally induced k-

algebraic homomorphism k[WV] iR k[V] given for g € k[W], W L k by
V—ow 5k
gop
L= (1'17 s xn) — (@1(1‘), SRR QOm(x)) — 9(901(1’)» SRR (Pm(l‘)) € k‘[V],

where @1, ..., oy are polynomials in zq,...,z,.
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Theorem 3.17. For k = k, there is an antz’—equivalenc of categories

{aﬂine algebraic sets over k} PN {f.g. reduced k-algebras with}
with regular maps k-algebra homomorphisms

V — k[V]

kW] 25 k:[V])
g—rgoy

k[xl, e ,.Tn]

e e

(VLW)»—><

E" DOV(I)+— R=
Proof.

Note 3.18. The assignment V —— k[V] is functorial: Given

v

h
there is f*, g%, h* and a commutative diagram

KV] <1 kW] «2— K[X],
—
h*
ie, (go f)* = f*og*. (Make sure this is obvious to you.)
Problem: Given a reduced, f.g. k-algebra R, how to cook up V?
Fix a k-algebra presentation for R:

R— k‘[:ﬂl,...,l’n].

Because R is reduced, I is radical. Let
V=V()Ck".
By the Nullstellensatz, I(V(I)) = I, so

L k[mlﬁ(v), Tn) _ klxq, .I..,xn] _R

What about homomorphisms of k-algebras?

R S
Ky, yml /T —2— k[, .. ] )T
Let p; = ¢(y;) € k[V] for i = 1,...,m. This uniquely defines ¢.

Need to construct
k" D V(J) L V(I) C k™
= (z1,...,20) — (p1(2),. .., om(x)).
We have that ¥ is a map V' — k™. Need to check that

(1) the image is in W,
(2) ¥* = .

1An anti-equivalence of categories C, D is an equivalence of C' and the opposite category D°P.
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To check
(p1(2), ..., om(x)) € VI) =W,
take any g € I. For any x € V,
9(1(@),.. ., om(@)) = @(g)(x) = 0.
We have that ¢ is represented by a map
Elyi, . ym] — klx1, ..., x4)
yi'—>§0ia Z:1,7m

Because ¢ induces a map of the quotient ring

k[ylv e 7ym] ® k[xlv e 7$n]
—
I J ’
¢(g) € J for any g € I. In other words, (1) C J.
Finally, it’s easy to check that this functor is the inverse functor to V — k[V]. O

3.5. Sep. 14 quiz question. Consider k V(y? — 23) C k? given by
t— (£2,17).

Is this a regular map? Bijective? Isomorphism? Describe explicitly the induced ¢*.
Inverse:

(z,y) — Yy it x #0,
x
(0,0) — 0.
© is an isomorphism <= ¢* is an isomorphism.

o, Ml e

is not an isomorphism of k-algebras.

3.6. Convention on algebraic sets. From now on, affine algebraic sets V' C k" = A" will be
considered as topological spaces with the induced (subspace) Zariski topology.

The closed sets of V are W N V', where W Ckn (affine algebraic set contained in V') is closed in
k™.

3.7. Hilbert’s Nullstellensatz and the Zariski topology. Assume k = k. Fix V C A" affine
algebraic set.
{closed sets in V'} «— {radical ideals in k[V]}
W I(W) ={feklV]]| f(p) =0Ype W}
V2 {peV | fp)=0vfel} =V(I) 1
Proof. Follows immediately from the Nullstellensatz in A™:

{affine algebraic sets in V'} «+— {radical ideals in k[z1,...,x,] containing I(V)}
K21, an
— {radical ideals in W} = {radical ideals in k[V]}.

O



12 KAREN SMITH

4. RATIONAL FUNCTIONS
[Caution: Despite the name, not functions!]

4.1. Function fields and rational functions. Fix affine algebraic set V. Assume V is irreducible,
equivalently, k[V] is a domain.

Definition 4.1. The function field of V is the fraction field of k[V], denoted k(V).
Ezxample 4.2. Let V.= A", k[V] = k[x1,...,2,]). Then

E(V) =k(xi,...,z,),
i.e., rational functions.

Definition 4.3. A rational function on V is an element ¢ € k(V). Le., ¢ is an equivalence class
f/g, where f,g € k[V], g # 0. Here,

iNL, —= fg' =gf
g g

as elements of k[V].

Ezample 4.4. In V(zy — 2%) C A3, 2/z is a rational function. Moreover, z/y is the same rational
function:

SIS

< | W

because zy = 2% on V.
Ezample 4.5. k[V] C k(V) always, by the map f +—— f/1.
4.2. Regular points.

Definition 4.6. A rational function ¢ € k(V) is regular at p € V if it admits a representation
¢ = f/g where g(p) # 0.

Definition 4.7. The domain of definition of ¢ € k(V') is the locus of all points p € V' where ¢ is
regular.

Ezample 4.8. In V(zy — 2?) C A? again, (0,1,0) is in the domain of definition of £ = z.

Remark 4.9. We can evaluate a rational function at any point of its domain of definition.
Proposition 4.10. The domain of definition of fized v € k(V') is a nonempty open subset of V.

Proof. Fix ¢ € k(V). Write ¢ = 5, where g # 0, f,g € k[V].

Since g # 0 on V', Ip € V such that g(p) # 0. So p is in U = the domain of definition of ¢, so
U+# 2.

Take any ¢ € U. So I can write ¢ = %, where ha(q) # 0. Now U’ :=V — V(hg) C V is an open
subset of V, and ¢ € U’ C U. O

4.3. Sheaf of regular functions on V. Let V be an irreducible affine algebraic set. Assign to
any open set U C V the ring Oy (U) of all rational functions on V' regular at every p € U.

Ezercise 4.11. Oy (U) is a k-algebra (because the constant functions are regular on every open set)
and a domain.

Whenever U; C Us is an inclusion of open sets, there is an induced ring-map
Oy (Uz) — Oy (Uh)

o 0|y,
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Note 4.12. If U =V, we have two definitions of “ring of regular functions on V.
k(V) 2 Ov(V) 2 k[V]
f

T

Theorem 4.13. For V irreducible affine algebraic set, k[V] = Oy (V).
Proof. Take ¢ € Oy (V). For any p € V, there is a representation ¢ = g—i such that g,(p) # 0.
Consider the ideal a C k[V] generated by the {gp} -
Note 4.14. V(a) C V is empty, so by the Nullstellensatz, 1 € Rad(a) = 1 € a.
So we can write
L=rigi+-+rge
for some g; = gp, in k[V] C k(V), r; € k[V]. Hence
Y =7r1g91 + - + TG
But pg; = f;, so
o=rifi+---+rfe € k[V]. O
5. PROJECTIVE SPACE, THE GRASSMANNIAN, AND PROJECTIVE VARIETIES
5.1. Projective space. Fix k. Let V be a vector space over k.

Definition 5.1. The projective space of V', denoted P(V'), is the set of 1-dimensional subspaces of
V.

We denote PP = P(k"T1).
Ezample 5.2. P;. = P(k*) = {1-dimensional subspaces of k?} = {lines through (0,0) in k*}.
We can use stereographic projection onto a fixed reference line to view P! = k U {00} as a line

with a point at infinity.
Specifically, IP’]%Q is homeomorphic to a circle, and IP)}C is the Riemann sphere.

Exzample 5.3. P; = P(k3) = k2 U P}

5.2. Homogeneous coordinates. In P}, represent each point p = [ag : a1 : - - - : a,] by choosing
a basis for it (i.e., choose any non-zero point in the corresponding line through origin in k"*1). At
least some a; # 0, and [bg : - - - : b,] represents the same point in P™ iff 3k # 0 such that

(kbo, ..., kby,) = (ag,...,an). (5.1)

Another way to think of P? is as (k"1 \ {0})/~, where two points in k"' are equivalent iff

(5.1) holds.

Note 5.4. If k =R, this gives P} a natural (quotient) topology, and similarly if £k = C.
Ezercise 5.5. P" is compact in that Euclidean topology.

In these coordinates, we have an open cover
n
n __
r=Uu,
Jj=0

where U; = {[zo : -+ : @] | @; # 0} = k™ are the standard charts.
Think of fixing one chart: Uy C P}. Consider Uy to be the “finite part”, and P"\ Uy = P71 the
“part at infinity”.
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FEzercise 5.6. (1) If k = R, then P} is a smooth manifold.
(2) If E = C, then P{ is a complex manifold.
(3) For any k, the transition functions induced by the standard cover are regular functions.

5.3. More about projective space.

Ezercise 5.7. In k™ < P", consider a line with “slope” (a1, as,...,ay), i.e., parametrize as
ait by
o tek
ant by,
Show that there is a unique point in P" “at infinity” on this line, with coordinates [0 : aj : - - : ay].

Ezample 5.8. In R™ < P%, consider two parallel lines, with one passing through the origin and
(a,b). These two parallel lines both approach the point [0 : a : b] in P2.

Ezample 5.9. Look at V(zy — 1) € R? C P2, In P2, we can “add in” two points at oo on the
hyperbola, [0:1:0] and [0:0: 1]. We get a closed connected curve!

5.4. Projective algebraic sets. P" = one-dimensional subspaces in k"*!. We have homogeneous
coordinates [zg : -« : xy).
Look at F' € k[zo,...,Zn).

Caution 5.10. I is not a function on P™ unless it is constant!

However, if F' is homogeneous, then it makes sense to ask whether or not F'(p) = 0 for a point
p e P

Lemma 5.11. If F € k[xg, ..., x,] is homogeneous of degree d, then
F(tzg, ... txy) = t*F(xo,. .., x,).

Proof. Write
F = Zalxéo...x;”, ar € k.
|I|=d
Check for each monomial. OJ

Definition 5.12 (projective algebraic set). A projective algebraic subset of P} is the common zero
set of a collection of homogeneous polynomials in k[xg, ..., Z,].

Ezample 5.13. V = V(22 + y? — 22) C P? is a cone; it consists of a set of lines through the origin.
In the chart U, = {[1 : y : 2]}, the equation for V N U, = V(1 + y? — 22) C k? is a hyperbola. In
the chart U,, VNU, = V(2% + y*> — 1) C k? is a circle.

5.5. Projective algebraic sets, continued. Let {F)\},., C k[zo,...,z,] be a collection of ho-
mogeneous polynomials.

Note 5.14. The affine algebraic set V =V ({F)\}/\GA) C A" is cone-shaped, i.e., Vp € V, the line
through p and the origin is in V.

Ezample 5.15 (Linear subspaces). Say W C k"t is a sub-vector space. Then
P(W) = one-dimensional subspaces of W = P(k"*1) = P".

Note 5.16. P(W) = V(Ly,..., L) € P", where L; = > a;jz; are a set of linear functionals in
V* which define W.
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Ezample 5.17 (Some special cases). W is one-dimensional = P(W) is a point.
W is 2-dimensional = P(W) is a line in P".
In general, if W is (d + 1)-dimensional, then P(W) is a d-hyperplane in P".
If W has codimension 1 in V, then V(L) =P(W) C P(V) = P" is called a hyperplane in P".

Fact 5.18. Every projective algebraic set in P" is defined by finitely many homogeneous equations.
Note 5.19. As in the affine case,
V ({Fa}yer) =V ((FA)yen) = V(any set of (homogeneous) generators for (Fy),c,)
=V (Rad (F)\)ycp) -

Definition 5.20 (homogeneous ideal). An ideal I C k[zo,...,x,] is homogeneous if it admits a
set of generators consisting of homogeneous polynomials.

Ezxample 5.21. I = (xS — 2y -z, z) is homogeneous because I = (w3,y2, z).

Fact 5.22. The projective algebraic sets form the closed sets of a topology on P, the Zariski
topology.

5.6. The projective Nullstellensatz.

Definition 5.23. The homogeneous ideal of a projective algebraic set V' C P" is the ideal I(V') C
klxo, ..., zy,] generated by all homogeneous polynomials which vanish at every point of V.

Note 5.24. Given a homogeneous ideal I C k[xg,...,x,]|, we can define both an affine algebraic
set V(I) C k™! and a projective algebraic set V(I) C P". These have the same radical ideal in
klxo,...,zp].

Fact 5.25. For any projective algebraic set V C P",
V(I(v)) =W
Theorem 5.26 (Projective Nullstellensatz). Only when k = k:

radical homogeneous ideals
{projective algebraic sets in P"} +— { in klxo,...,z,] except for } .
(20, Tp)

We call (z,...,x,) the irrelevant ideal.
In general, the Zariski topology in P" restricts to the Zariski topology in each affine chart:

P*DV = V(Fl(xg, cey Tn)y ey Fi(To, .- ,l‘n))
DV NU; =V(Folto,. -, 1, tn), .o, Fylto, ..., 1,... 1)),
where the coordinates are given by
Ui — k"

Io -~ In
[xoz'--:wi:-'-:wn]»—><,...,z,..., >
T T

5.7. Projective closure.

Definition 5.27. The projective closure of an affine algebraic set V' C A" is the closure of V in
P, under the standard chart embedding A" = Uy — P".
Ezample 5.28. Consider V = V(zy — 1) C A%

V =V(zy— 1) =V(zy — 2?) C P2
Look at VNU, =V.
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Look at V' N {“line at infinity” }:
VNV(z)=V(zy — 22, 2) = Z(zy,2) = {[1:0:0],[0: 1: 0]} C P2

Definition 5.29. Given a polynomial f € k[z1,...,x,], its homogenization is the polynomial
F € k[Xy,...,X,] obtained as follows: If f has degree d, write

f:ZaIa:?...xf; =fat+ Jair + fa2+ -+ fo,
where f; is the homogeneous component of degree i. Then
F = fo+ Xofas—1+ -+ XG fa—a + -+ X{ fo.

Caution 5.30. Given V. = V(f,..., f;) C k", the projective closure V in P" is not necessarily
defined by the homogenization of the f;.
For example:

{(t,2% %) |t ek} C K> — P

1 1 1
L) — Nt = =201
(7 7) [ ] t3 tQ n )

so it has exactly one point at infinity, [0:0:0 : 1].
Consider I = (2 — 2y,y — 22).

Ezercise 5.31. Show V(zw — xy,yw — x?) C P3 is not the projective closure of the twisted cubic.

6. MAPPINGS OF PROJECTIVE SPACE
6.1. Example: Second Veronese embedding.
pt =, p?
[z :y] —> [$2,my,y2]
Check: [z : y] and [tz : ty] for any ¢ € k have the same image:
[tz : ty] — [(tw)2 s (tx) (ty) - (ty)Q] = [t2x2 Sty t2y2] = [1‘2 txy y2] .

Also, if x # 0, then vo([z : y]) € Uy, and if y # 0, then vo([z : y]) € Us.
This is called the “2nd Veronese embedding of P! in P2.” In general, the d-th Veronese map

vg: Pt — e
[z :y] — {xd sy sy yd]
Look at v5 in charts of Pt = U, U Uy:
A1—>Uy:{[w:y]|y7é0}C1P’1
t— [t 1]
T
—— [z :y]
Y
We have
Uy =25 Uy = A?
[2:1]— [2? 121 1]
A? — A2
t— (t4,1).

This is a reqular mapping of Al — A2
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6.2. Geometric definition. Thinking geometrically of P' as covered by two copies of Al, this
map 1o is a regular mapping on each chart.
This is the idea in general of a “regular mapping of varieties”.

6.3. Example: The twisted cubic. This is the third Veronese mapping;:

vg: Pt — P3

[x:y]>—>[a:3:x2y::cy2:y3]
Al =U, —Uy={[1:2:y:2]} =A3
t:%%[1:t:t2:t3]:(t,t2,t3)

6.4. Example: A conic in P2
P22V =V(zz —y?) S P!
iy 2] — [z:y] ifz#0,
[y:z] if z#0.

Note that if x = z = 0, then y = 0, so this case cannot occur.
What if x # 0 and z # 07 Then y # 0, so

@iy = [oy:9?) = [y 22] = [y : 2.

So ¢ is a well-defined map of sets.
Cover V by open sets, each identified with an affine algebraic set: V NU, and V NU..

A22V<;—(i>2> —vVnu, £ p

[x:y:z]— [z:y]

[1;£:E}H[1:E}
x T x
[1:t:s]—>[1:1]
(t,s) —> t
So ¢ is projection onto the t-axis in U,: regular in local charts. (Similar in every chart.)

6.5. Projection from a point in P" onto a hyperplane. Fix any p € P" and any hyperplane
H C P” not containing p.

Example 6.1 (special case). Fix a point p € P? and a line L C P? such that p ¢ L.

Choosing coordinates, let H = V(zo) =P* 1 CP*andp=[1:0:---:0] ¢ H.
Definition 6.2. The projection from p to H is the map

I, :P" — {p} — P"'H CP"
—
x+— fp N H,

where ¢p is the unique line through p and z.

Question: How does this look in local charts on P™?

P {[1:0:-: 0]} —25 PP = V(zg) C P
Upo[1: A — A0 A
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We have
C={[l:thr A ] [tek}={[F M. 0] [ t€k}2[0,A,..., A
If we had a chart where p was at infinity, it would look like “projection”
A" — A"
(:Elv s 7xn) — (:Elv s 7xn71)

in the usual sense.
6.6. Homogenization of affine algebraic sets.
Ezercise 6.3. If V C A" is an affine algebraic set with projective closure V' C P", and if I(V) C

klz1,...,zy] is the ideal of V', then I(V) C k[zo, ..., zy] is generated by the homogenizations of all
the elements of I(V).

Ezercise 6.4 (purely topological). Let V' C P" be a projective algebraic set. Then V' is irreducible
if and only if V N U; is irreducible Vi = 0, ..., n, the “standard affine cover” of V.

7. ABSTRACT AND QUASI-PROJECTIVE VARIETIES

7.1. Basic definition and examples.

Definition 7.1. A quasi-projective variety is any irreducible, locally closed (topological) subspace
of P™.

Le., W CP" is a quasi-projective variety by definition if W = U NV, where U C P" is open and
V' C P" is an irreducible projective set.

Ezample 7.2 (Some quasi-projective varieties). (1) Irreducible affine algebraic sets are quasi-
projective varieties:
V=VnUyCA"=UCP"
(2) Irreducible projective algebraic sets.
(3) Open subsets of affine or projective varieties.

Ezample 7.3 (An abstract variety).
M, = {moduli space of compact Riemann surfaces}
= {moduli space of smooth projective varieties/C of dimension 1}
This is an abstract algebraic variety.
Theorem 7.4 (Fields medal, Deligne and Mumford). 9, is quasi-projective.
Ezample 7.5 (Another moduli space). Lines in P? = P(k®) can be viewed as P ((k%)*).
7.2. Quasi-projective varieties are locally affine.

Proposition 7.6. A quasi-projective variety W has a basis of open sets which are (homeomorphic
to) affine algebraic sets.

Proof. First W =V NU, where U C P" is open and V C P" is closed and irreducible. Then
WnU,=(VnUnU)=VnUu)NnUnU;) CV;=VnU; CU; = A",
and (V NU;) N (UNU;) is an open subset in the affine variety V.
But an open subset of an affine variety has an open cover by affine charts:
V—-V(g1,...,9,) =UCV CA"
for g; € k[V], then

r

U= U(V_V(gi))' -

=1
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7.3. The sheaf of regular functions. Fix a quasi-projective variety W. What is Oy/?

Definition 7.7. Let U C W be any open set. A regular function on U is a function ¢ : U — k
with the property that Vp € U, there exists an open affine set p € U’ C U such that cp}U is regular
onU.

Equivalently, ¢ : U — k is regular <= SO‘UmUi isregularon UNU; Vi =0,... ,nﬁ

Ezample 7.8. Xo, X1 in k[Xo, X1, X3] are not functions on P2,
But the ratio % is a well-defined function on P? — V(Xy) = Up.

Ezample 7.9. ¢ = % =t; (the “j-th coordinate function”) is a regular function on P™\ V(X;) =
U; <— k" in coordinates X e %

How does this look in U 7 U, has coordinates & S etRRE denoted tg, ..., tx,...,tn. Then

’X’
Xj  Xi/Xe t

X, Xi/X. t

is a rational function of the coordinates, regular on U, \ V(¢;) = U; N Uy.

Remark 7.10. We get a sheaf Ow of regular functions on the quasi-projective variety W. To each
U C W, assign Oy (U) = ring of regular functions on U.

Ezxample 7.11. Opn(P") = k. So if n > 1, then P" is not affine!

7.4. Main example of regular functions in projective space. Let F,G € k[xo,...,z,] be
homogeneous of the same degree. Then ¢ = g is a well-defined functions on P" \ V(G):

F(tzo,... tx,)  t9F(xo,...,2n)  F(zo,...,T0)
G(txg, ..., try) tiG(xo,...,zn) G(zo,...,2n)

Moreover, ¢ is regular on U := [P™ \ V(G)].

open

We now check this. It suffices to check that cp|sz (for i = 0,...,1) is regular on U; NU C
U; = A™.
Lemma 7.12. If F € k[Xy, ..., X,,] is homogeneous of degree d, then
F (Xo X1 Xi1 Xn>

— =F , 1,

Proof. Comes down to checking for X§° ... X5 (with > a; = d):
X“O : Xan ‘ a0
e ol(R) :
7=0

Now we have

F_F/.I‘;i _F(%,,Lv%) _f(t077i;7,tn)

SOUi:G_G/nc?_G(f’fo...,1,... L") glto, ., ti, tn)

x; T Xy

is a rational function on A" = Uj;, regular on [A™\ V(g)] = U; N (P"\ V(G)). So ¢ is regular on
U. O

2W=0Unv = UCWisUNUNV =U, and (ﬁﬂﬁﬂV)ﬁUiisopeninVﬂUi,whichisaﬂine.
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7.5. Morphisms of quasi-projective varieties.

Definition 7.13. A regular map (or morphism in the category) of quasi-projective varieties X AN
Y C P" is a well-defined map of sets such that Va € X, writing ¢(x) € Y NU; C U; = k™ for some
i, there exists an open affine neighborhood U of z € U C X such that ¢(U) C U; and ¢ restricts
to a map

U—YnN Ui - Ui

Z—> (cpl(z), .. .,cpn(z)),
where ¢; € Ox(U).
Definition 7.14. An isomorphism of varieties is a regular map X 24 Y which has a regular
inverse Y i) X.

Ezample 7.15 (The d-th Veronese map). Let m = (":d) —1. Then the d-th Veronese map is defined
by

]P)n Vd ]P)m
d d—1 .oad
[Xo 1 xp] — {xo txg X {L‘n],
where the coordinates are all degree d monomials in xg, ..., z,.

Ezample 7.16 (Projection). p ¢ H = hyperplane in P":
P\ {p) — B = H
[xo - rap] — [o1 o xy)]
8. CLASSICAL CONSTRUCTIONS
8.1. Twisted cubic and generalization.
Definition 8.1. The twisted d-ic in P? is the image of P! under the d-Veronese map
P! 2 ¢, C P?
[s:t] — [sd:sd_lt:---:std_lztd] =lzg:- x|
Fact 8.2. vg is an isomorphism P! = Cy. The inverse map is
c; — P!

[xO""'.%'d]l—) [«’13'02(171] lfxl#(L
- [g—1 :2q] ifz1=0.

8.2. Hypersurfaces.

Definition 8.3. A hypersurface in P™ of degree d is the zero set of one homogeneous polynomial
of degree d.

Let V = V(F,;) C P", with F, irreducible. Pick p ¢ V.

II
P\ {p} —— P!

HP
V——p!

Ul

finite map, “generically” d-to-1.
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Lemma 8.4. Every line in P™ must intersect V at < d points. (“Generically” exactly d points;
strict inequality is possible due to multiplicity.)

Proof.
V(Fy) NV (xe,...,xn) =V(Fy,x9,...,2,) = V(Fy) CL=V(xg,...,x,) CP"

8.3. Segre embedding. Category of quasi-projective varieties:

Objects: (irreducible) locally closed subspaces of P" (all n) over fixed k = k.

Morphisms: Map of sets P* O X -2 Y C P™ such that on sufficiently small open subsets
of X; =XnNU; CA", (P‘U is a regular mapping into some chart of P™.

Is there a notion of product in this category?
Recall: For X C A™, Y C A" affine algebraic sets,

X xY CA™ x A" = A™tn

is an affine algebraic set. But P™ x P" # P so we can’t do a similar thing for projective
algebraic sets.
Indeed, P? \ A? is one line at infinity, but

(P! x P') \ A* = {oo x P'} U {P! x oo}
consists of two lines at infinity.

Goal 8.5. Put the structure of a quasi-projective variety (projective) on P x P™.
Want:

(1) 0:P" x P — ¥ C P?, where ¥ is a (closed) projective algebraic set, and o is compatible
with the identification A" x A™ = A™*" 25 5(A™*") on each affine chart U; x U; =
A x A™.

(2) There should be regular maps ¥ —— P, ¥ 25 P™,

(3) (Linear space) x p C P™ x P™ maps under o to a linear space of the same dimension in P,

Ezxample 8.6.
P! x Pt 2 PP
([x:y],[z:w]) — [z : 2w : yz : yw]

The image of 011 is V(X()Xg — XlXQ).
On U, x U, = Al x Al = AZ:

A=A x A! = V(zy —2) C A3
((1,8),(1,8)) —> [L:t:s:ts]
Also,
P! x [a:b] — {[za: xb: ya : yb] | [x:y]E]P’l} C P C P(kY)
is a line in P? corresponding to the 2-dimensional subspace
span {(a,b,0,0),(0,0,a,b)} C k*.

This is the “definition” of P! x P! as a quasi-projective variety.
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Definition 8.7. The Segre map is
P" x pm Inm S C P(n+1)(m+1)71
o
([Sﬁoi"'iﬁUn],[yoi"'iym])'—> [yo ym] :P(Matk(n+1am+1))
Tn

J/

(n+1)x (m+1) matrix

Remark 8.8 (Linear algebra review). TFAE for any matrix A of size d x e:

1) The rows are all multiples of each other by a scalar.

2) The columns are all multiples of each other by a scalar.
3) A factors as (d x 1) x (1 x e).

4) The rank of A is < 1.

5) All 2 x 2 subdeterminants of A are zero.

(
(
(
(
(

200 ---  20m
Writing the matrix coordinates as | : C,
Zn0 .- - Znm
200 .- - Z0m
Yinm = V | determinant of 2 x 2 minors of
Zn0 -+  Znm

The projections ¥ —— P, ¥ 25 P™ are given by
1
p= [zl-j] — any column of p,
and likewise, 7o takes any row. (This is well-defined because the matrix has rank 1.)
8.4. Products of quasi-projective varieties.

Definition 8.9. If X C P" and Y C P™ are quasi-projective varieties, then we define a quasi-
projective variety structure on the set X x Y by identifying X x Y with its image under the
appropriate Segre map opy,:

Onm(X X Y) C By C POADMAD-
This gives X x Y a Zariski topology!

How do the closed sets look?

Definition 8.10. A polynomial F' € k[xg, ..., Zn, Y0, - -, Ym] I8 bihomogeneous if F' is homogeneous
separately in xo, ..., x, (treating the y; as scalars) and yo, ..., ym (treating the x; as scalars).

Ezample 8.11. The polynomial z3y1y2 — zor123y3 is bihomogeneous of degree (5,2).
However, z{ — y¢ is not bihomogeneous.

Note 8.12. If F € k[zo,...,Zn,Y0,---,Ym] is bihomogeneous, then V(F) C P" x P is well-defined.

Ezercise 8.13. The closed sets of P x P are precisely the sets defined as the common zero set of
a collection of bihomogeneous polynomials in k[xq, ..., Tn, Yo, - - -, Ym)-

Ezample 8.14. The Zariski topology on P" x A™ with coordinates k[xq, ..., Zn, Y1, - -, Ym) has closed
sets exactly of the form

v ({F)\([IJQ, cey Ty Y1y - 7ym)})\€A) )
where F) is homogeneous in xg, ..., Z,.
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8.5. Conics.

Definition 8.15. A conic in P? is a hypersurface (curve) given by a single degree 2 homogeneous
polynomial.

Three kinds:

Nondegenerate: V(F) C P? such that F does not factor into 2 linear factors. (Showed in
homework: changing coordinates, these are all the same.)
Degenerate, two lines: F' = L Lo, where ALy # Lo. Then V(F) = V(L;) UV(Ls).
Think of this as the limit as ¢ — 0 of a family of nondegenerate conics

{V(zy = D)}yep © A%

Degenerate, double line: F' = L?. Then V(F) = V(L3?).
Think of this as the limit as ¢ — 0 of a family of degenerate conics

V(y(y — tx)) = V(y) UV(y — tz) C A%.

This line V(3?) is one line “counted twice”. This is a scheme, but not a variety.

Every conic is uniquely described by its equation F' € [k[z,y, ZH?H
Let C C P(k?) be a conic. We have a correspondence

C’:V(AasQ—|—Ba:y+C’y2+D:Cz—|—Eyz—i—Fz2) +—[A:B:C:D:E:F]
{conics in P(k?)} «— P (Sym?* ((k*)*)) = P°.

Moreover, we have proper inclusions of closed subvarieties

Dy = {double lines} & Dy = {pairs of lines}  {all conics in P(k®)} =P (Sym* ((k*)*)).
As we will show on the homework, Dy = image of P? under the Veronese map vy : P? — P°.

This is the beginning of the study of moduli spaces.
8.6. Conics through a point. Fix p € P2. Consider the set
Cp = {C’ C PP? conic in P? passing through p} GP (Sym2 ((k?’)*)) = P>,

This is a hyperplane. Indeed, write p = [u : v : t]. A conic

C =V(Az? + Bay + --- + F2%)

G

passing through p <= G(p) =0 <= Au?+ Buv + Cv?+ Dut + Evt + Ft?> = 0, which is a linear
equation L in the homogeneous coordinates A, B,C, D, E, F for P> =P (Sym2 ((k:3)*)) Thus,

C, =V(L) C P

Theorem 8.16 (“5 points determine a conic”). Given p1, p2, p3, pa, ps € P? distinct points, there
is a conic through all 5 points, unique if the points are in general position.
If no three points are on the same line, then there is a unique nondegenerate conic through them.

3[k[m, Y, 2]]y = Sym? ((k3)*) denotes the vector space of degree 2 homogeneous polynomials, i.e., the 2nd component
of the graded ring k[z,y, z].
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9. PARAMETER SPACES
9.1. Example: Hypersurfaces of fixed degree. Recall:
{conics in P2} +— {their homogeneous equations up to scalar multiple}
+— P (Sym2 ((k‘g)*)) = {deg 2 homogeneous polynomials in 3 variables} /scalars
= [k[z,y, z]], /scalars = Sym?® ((k*)*) /scalars
Similarly:

{hypersurface of degree d in P"} «—— {their equations up to scalar multiple}

V(Azd + Bad ey + )

”

P (Sym* (k71)%)) = B(") 1

“homog. degree d in zg,...,zn

Note that these are not really varieties, since we remember the homogeneous equation.

9.2. Philosophy of parameter spaces. Philosophy: the set of hypersurfaces of degree d “is” in
a natural way a variety. The subsets (“algebraically natural” subsets) are subvarieties.

The “good” properties will hold on open subsets of p("n )1 (hopefully non-empty), and “bad”
properties will hold on closed subsets of P(nzd)fl (hopefully proper).
9.3. Conics that factor. Look in P (Sym? ((k3)*)) = set of conics in P2. Does “V(F)" +— [A :
B:C:D:E: F] factor or not?

F = Az? + Bay + Cy? + Dzz + Eyz + F2?

factors <—

A IB ID

1 1
det ?B C B

;D 3E F=0.

The subset where the conic degenerates into 2 lines is
A IB %D
V | det %B C sE
sD iE F

Now we have

{hypersurface of degree d in P"} «———— {their equations up to scalar multiple}

Ul P (Symd ((kn—i-l)*)) _ P("Id)fl

Ul closed
{hypersurfaces whose equations factor} < X

where F' = F;F,_; factors and

%
X = U X;,
i=1

with X; = the subset of hypersurfaces of degree d where equation factors as (degi)(degd — 7).
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Theorem 9.1. The set of degree d hypersurfaces in P™ = P(V') which are not irreducible (meaning:
whose equations factor non-trivially) is a proper closed subset of P (Symd(V*)).

Proof. 1t suffices to show each X; = {F = F;F;_;} is closed and proper. Consider
P (Sym'(V*)) x P (symd—i(v*)) P (Symd(V*)>

(F,G) — FQG,
where F, G are homogeneous of degrees ,d — ¢, respectively, in xq, ..., Ty.
Easy to check: ¢ is regular and image is X;. Need to check closed (proper). O

This follows from the following big theorem:

Theorem 9.2. If V is projective and V LY s any regular map of quasi-projective varieties,
then ¢ sends closed sets of V' to closed sets of Y.

Caution 9.3. Really need the hypothesis that the source variety is projective. E.g.:
Up = A" —V(f) < A"
regular map, image is open. Also, the hyperbola:
A% T Al
(z,y) — =
m(V(zy — 1)) = A" — {0},
which is not closed.
10. REGULAR MAPS OF PROJECTIVE VARIETIES

10.1. Big theorem on closed maps.

Theorem 10.1. If V is projective and V “s X isa reqular map to X (any quasi-projective
variety), then ¢ is closed (i.e., if W C 'V is a closed subset of V', then (W) is closed).

Note 10.2. To prove the theorem, it suffices to show that (V') is closed.
[If W C V is closed (irreducible), then W is also projective. So go‘W : W — X has the property

that (p‘W(W) is closed, thus (W) = gp‘W(W) is closed.]
Corollary 10.3. If V is projective, then Oy (V) = k.

Proof. Let V “5 k CP! be a regular function. We can interpret ¢ : V. — P! as a regular map.
So the image is closed in P! by Theorem m

Thus (V) is either a finite set of points (or @) or ¢(V) = PL. Since ¢ is an actual map into
k S P, (V) must be a finite set of points. But V' is irreducible, so ¢(V) is a single point. O

10.2. Preliminary: Graphs. Fix any regular map of quasi-projective varieties X Ly,
Definition 10.4. The graph T', of ¢ : X — Y is the set
{(z.y) | pla) =y} S X xY.
Proposition 10.5. I', is always closed in X X Y.
Proof. Step 1: Without loss of generality, Y = P™, since X 25y C P™ and we interpret ¢ as a
regular map X — P". We have
', CXxYCXxP",

and to show I', is closed in X x Y, it suffices to show I', € X x P™ is closed.
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Step 2: Consider the regular map
b X x pr L2 py pm
(z,y) — (p(2),y).

Note 10.6. T'y, = ¢~ 1(A), where A = {(z, 2) ! z € P™} is the diagonal subset of P™ x P™,
which is closed.

Because A is closed, so is I'y,. ]
10.3. Proof of Theorem Fix V % X regular map, V projective. Need to show ¢(V) is

closed.
Let I'y €V x X be the graph. Consider the projection

[, CVxX - XDrTy,)=eV),
which is a regular map. It suffices to prove that m(I'y) is closed.

Theorem 10.7. If V is projective and X is quasi-projective, then the projection V- x X - X s
closed.

Proof of Theorem[10.7. First, using point-set topology arguments, reduces as follows:

(1) WLOG, V = P".
(2) WLOG, X is affine.
(3) WLOG, X = A™.

Now:
P" x A™ 5 A
Put coordinates xg,...,x, on P" and y1,..., ¥y, on A™.
Want to show: Given closed Z C P x A™, that ¢(Z) is closed in A™. Write

Z :V(gl(:vo,...,xn,yl,...,ym),...,gt(fvo,...,xn,yl,...,ym)),
where g; are homogeneous in zy,...,z, (but not in the y;). What is the image of Z?
Note 10.8. (A1,...,\p) € A™ is in 7(2) iff
@ #V(g1(x0, .-, Tn, Ay Am)s e, 9 (0, - Ty A, - A)) S PP
iff (by the projective Nullstellensatz)
Rad(gl(:c, DY ,gt(ar,)\)) 2 (x0,...,2n)
iff
(gl(a:,/\),...,gt(x,)\)) ? (mo,...,mn)T vT.
So we need to show: The set Ly of all A = (A1,...,\y,) € A™ such that
(zo, ..., xn)T ¢ (gl(:z, A, gz, )\))
is closed. The image of m(Z) C A™ is

00
m LT7
T=1

so it suffices to show that each L C A™ is closed.
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Aside 10.9 (Converse). Let’s consider the converse:

(20, 20)" C (g1(z,A)s -y ge(2, M) in klwo, ..., 2]
Look in degree T part of k[zg,...,zy]:

Elzo, s aally S {915+ 90)]7

Basis here is {xao eegln

}zz‘k:T'

Spanning set for the o-dimensional [(g1,...,9n)] = subvector space of degree T' elements in
(gl(xv )‘)a s agt(1:7 )‘))

{9/} = {gi(a:,/\)-xgo---a:%” ’deg(gi):di, ng:T—di, izl,...,t}.

Write a matrix with the coefficient ! in g in the (I.J)-th spot. The coefficients are polynomials
in A1,..., Am. This is a basis iff the matrix is nondegenerate.

0

11. FUNCTION FIELDS, DIMENSION, AND FINITE EXTENSIONS

11.1. Commutative algebra: transcendence degree and Krull dimension. Fix k£ — L
extension of fields.

e The transcendence degree of L/k is the maximum number of algebraically independent
elements of L/k.

e Every maximal set of algebraically independent elements of L/k has the same cardinality.

o If {x1,...,24} are a maximal set of algebraically independent elements, we call them a
transcendence basis for L/k.

e If R is a finitely generated domain over k, with fraction field L, then the transcendence
degree of L/k is equal to the Krull dimension of R.

11.2. Function field. Fix V affine variety.

Definition 11.1 (function field of an affine variety). The function field of V', denoted k(V), is the
fraction field of k[V].

Say V —-V(g) =U, = U CV for some g € k[V]. Then

Ov(V)C rest. Ov(U)C rest. OV(Ug)
](

k[V
Note 11.2. Function fields of U, and V' are the same field.

Fix V' C P™ projective variety.

Definition 11.3 (function field of a projective variety). The function field of V', denoted k(V'),
the function field of any V' N U; (standard affine chart) such that V NU; # @.

Question: Why is this independent of the choice of U;?
Vi=VnU; = {[:1:0 Dol Ty | T # 0} is an affine variety in U; = A™. Then k[V;] is generated
by (the restrictions of) the actual functions on Uj;
o T1 Tn

Ty T Ty ey ’
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and likewise for k[V}]. If ;f—; =0on U;NU; NV, then z; vanishes on U; NU; NV, which implies that
x; vanishes on V' and hence V NU; is empty. So we can write

T T/

Ty $i/$j ’

thus k[V;] C k(V}), hence k(V;) C k(V;). By symmetry, k(V;) = k(V;).

Definition 11.4 (function field of a quasi-projective variety). The function field of a quasi-
projective variety V is k(V), where V is the closure of V C P™.

Equivalently, it is the function field of any V N U; (such that V NU; # @) or indeed of any open
affine subset of V.

11.3. Dimension of a variety.

Definition 11.5. The dimension of a (quasi-projective) variety V/k is the transcendence degree
of k(V) over k.

By convention, the dimension of an algebraic set is the maximal dimension of any of its (finitely
many) components.

Ezxample 11.6. e dimA™" =n
e dimP"=n
e dim(X xY)=dimX +dimY
e All components of a hypersurface V(F') C P" have dimension n — 1.

Definition 11.7. A regular map X - Y is finite if (in the affine case) the corresponding map of
coordinate rings is an integral extension, or (in general) if the preimage of an affine cover of Y is
affine and ¢ is finite on each affine chart.

Theorem 11.8. If X 25 Y is a reqular map, finite, then dim X = dim Y.

Proof. Reduce to the affine case: X — Y finite <= k[Y] LN k[X] is an integral extension. [J

11.4. Noether normalization. Take some p ¢ V. Then

Tp Tpo
Pnffépn—177$ﬂpn—277$...f7§Pd

Ul Ul Ul

Vv S V’l S ‘/2 N IP)d
W
Theorem 11.9. If V C P” is a projective variety, dimd, then there exists a projection V —» P?
(finite).
Intersect with Uy = A™:
VAA" » ViNA; —» ... —» Vg NA" = A%
This induces the pullback

k[ﬂ?l, ey l'n] finite int.

)k[ylv' . "yd])

where the y; are linear in the x;.

Theorem 11.10 (Noether normalization). Given a domain R, finitely generated over k (k infinite),

there exists a transcendence basis y1,...,yq consisting of linear combinations of the generators for
R.
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11.5. Dimension example. Recall: dim V' = transcendence degree of k(V') over k.
The dimension of a point is 0, since k({p}) = k.
The dimension of the variety V(zy — zw) C A%2*2 of 2 x 2 matrices over k of determinant 0:

klz,y, z,w]
(ry — 2w)

Observe that x,y, z is not a transcendence basis, because w is not integral over k[z,y, z]; indeed,
it’s not a finite map, because the preimage of the zero matrix under the projections w —— 0 is
infinite.

k[V]=

Claim 11.11. Lett = x—y. Then k[z,w, ] <y klx,y,w, z]/(xy—zw), and z,w,t is a transcendence
basis for k(V') over k.

Need: z,w,t are algebraically independent. [Means: If z,w,t satisfy some polynomial p with
coefficients in k, then p = 0.]

Need: Check i is integral: Suffices to check x is integral over k[z,w,t].

Note: 22 —tx — zw = 0 in k[z,y, z, w]/(vy — zw).

11.6. Facts about dimension. Fix V irreducible quasi-projective variety.
Fact 11.12. If U C V is open and nonempty, then dimU = dim V.
Fact 11.13. If Y ; V is a proper closed subset, then dimY < dim V.

Fact 11.14. Every component of a hypersurface V(F') in A" (or P") has dimension n—1 (codimension
1).
Sketch of Fact[11.1] Pick p ¢ V(F) C A", with F irreducible. Choose coordinates such that
p=1(0,...,0,1). So

f=2d 4azdt+.- 4ag,
where a; € k[z1,...,2,—1]. Easy to see: z1,...,x,_1 are a transcendence basis over k for

kE(zy,...,zp)

(f)

Fact 11.15. Every codimension 1 subvariety of A™ (or P") is a hypersurface.

Proof. Let X & A™ have codimension 1. Let I(X) & k[z1, ..., z,], which is prime by irreducibility.
We need to show I(X) is principal.

Take any F' € I(X). Without loss of generality, F' is irreducible. Then (F') C I(x), and if we
have equality, then we are done. Otherwise,

V(F) 2 V(X)) = X,
and since dimV(F') =n — 1, we have dimV(I(z)) <n — 1. O
Fact 11.16. If X — Y is finite, then dim X = dim Y.
Fact 11.17. If V C P" is projective, then V has dimd <= V - P9 is a finite map to P
Fact 11.18. If we have a projection P* 5 P™ from a linear space V(Ly, ..., L), then
[€o: - txp] —> [Lo: -+ : L)

gives a finite map when restricted to any projective variety V' C P", whose disjoint union forms a
linear space V(Lg, ..., Ly).
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11.7. Dimension of hyperplane sections.

Definition 11.19. A hyperplane section of X is X N H, where H = V(agzg + - - + apzy) C P" is
a hyperplane.

Theorem 11.20. dim(X NH) = dim X —1, unless (of course) X C H (in which case XNH = X ).

Proof. First: For any closed set X = X; U---UX; (irreducible components of X) in P", I can find
a hyperplane H such that dim(X N H) < dim X, or more specifically,

XNH=(X1NH)U---U(X:NH),
and each X; N H G X;.
Claim 11.21. Most hyperplanes H have this property!

Lemma 11.22. Fiz any finite set of points pi,...,ps in P*. Then there exists a hyperplane H
which does not contain any p;.

Proof of |11.2%.
{hyperplanes on P" = P(V)} «+—— P(V*)
Ul UN
{hyperplanes through p;} «+—— H,, ——= V(L)
So
{hyperplanes not containing p1,...,p} = P(V)\{V(L1) U---UV(Ly)}. O
Back to Theorem [11.20} we have
P > V(Li)=Hy 2 V(Li,Ly)=HiNHy, 2 -+ 2 V(Li,...,Lg)
Ut U UN UN
X 2 XNH 2 XNHNHy, 2 - 2 XNHN---NHy
Xo X1 X s %)
d = dim X > dim X, > dim X > s > 0

Want to show the dimension drops by 1 each time. If not, after d steps, get &.
So the linear space P(W) = V(Ly,...,Lgs) N X = @. Project from P(W):

pr L, pi-t
[€g -+t xp] —> [L1(z) -+ 1 Lg(x)]
X = X

finite!

— dim X =dim X’ < (d — 1), a contradiction. Hence dim X = d.
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11.8. Equivalent formulations of dimension. V' C P" projective variety.
The dimension of V is any one of the following, which are equivalent:

(1) transcendence degree of k(V') over k.

(2) the unique d such that 3 finite map V — P,

(3) the unique d such that V. N H; N HyN---N Hy is a finite set of points, where the H; are
generic linear subvarieties of codimension d.

(4) the length of the longest chain of proper irreducible closed subsets of V':

V=Vai2Va12 Va2 - 2V 2 V= {point}.
12. FAMILIES OF VARIETIES

12.1. Family of varieties (schemes). (Not necessarily irreducible.)

Definition 12.1. A family is a surjective morphism (regular map) X Loy of variety.
The base (or parameter space) of the family is Y. The members are the fibers {f‘l(y)}yey.
Ezample 12.2. X = V(zy — z) C A3,
V(zy — 2) LAl
(z,y,2) — 2.

Then
F7H) = V(zy — A) € A% x {A}.

Example 12.3. Hyperplanes in P" «— P ((k”“)*) by the correspondence
H=V(AXo+ -+ A X,) «— {AoXo+ A1 X1 + - + 4, X,,} /scalar values.
12.2. Incidence correspondences. Consider the “incidence correspondence”
2 ={(p,H)|peH} CP"xP"=P(V) x P(V*).
Putting coordinates [Xo, ..., X,] on P(V) and [Ao, ..., Ay] on P(V*), we have
X =V(AgXo+ -+ ApnXy) — (PM)*
7 N [Ag - A)) = V(ApXo + - + A X)) — [Ao, ..., Ay

Theorem 12.4. Let X ~f» Y be a surjective reqular map of varieties, dimX = n, dimY = m.
Then:

(1) n>m.

(2) dim F > n —m, where F is any component of any fiber f~*(y) C X (withy €Y ).

(3) There is a dense open set U CY such that Yy € U, f~1(y) has dimension n —m.

Corollary 12.5. Let X L> Y be a surjective regular map of projective algebraic sets. Assume Y
1s irreducible and all fibers are irreducible of the same dimension. Then X is also irreducible!
Ezample 12.6 (Blowup). B = {(p,£) | p € £} C A% x P!,
B ={(p,?) |p€€} I pt
A2x 0D V(ax —by) =71() — L=1a:b].

Note that each of the fibers is 1-dimensional.
Now: B is dimension 2, and

B L5 A?

(a.[a:8]) — q = (a,b) € A” = {(0,0)}
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is a “generic” fiber and has dimension 0 = 2—2. But the fiber over (0,0) is P!, which has dimension
1. The dimension jumps!

12.3. Lines contained in a hypersurface. Q: Fix an (irreducible) hypersurface of degree d in
P3. Does it have any lines on it?

A:Ford=1: X = V(L) 2 P? C P3 is covered by lines.

Ford = 2: X = V(zy — wz) & P! x P! C P3 is covered by lines. Degenerate cone: X =
V(z? + 52 + 2%) C P? is also covered by lines, as is V(zy), the union of two planes.

Consider the incidence correspondence

2 = {(V(F),0) | £ S V(F)} CP (Sym’(k")*) x Gx(2,4),
where P (Symd(k4)*) = parameter space of hypersurfaces of degree d in P3, and Gr(2,4) = lines in

P3 = 2-dimensional subspaces of k*.
Take the projections

2 TP (Symd(k4)*) ,
2 25 Gr(2,4).

Consider v: Compute the fiber over ¢. Without loss of generality, ¢ = V(Xp, X1) C P3. Then
v=1(¢) = V(F) such that

V(Xo,X1) CV(Fy) <= (Xo,X1) 2 (Fy) = XoGg—1+ X1Hg_1.
The equation Fj has coefficients 0 on the terms Xg, Xg_ng, el X?‘f. So
v i) CP (Symd(k4)*)

is a linear subspace of codimension d 4+ 1. The dimension of the fiber is

<d§3> 1 (d+1).

Hence, the fibers are all irreducible of the same dimension.
Thus, by Corollary 4 is irreducible of dimension 4 + (fiber dimension).

12.4. Dimension of fibers.

Theorem (12.4). Given a surjective regular map X 2y of varieties, we have
(1) dim X > dimY
(2) dim F > dim X — dimY for F any component of any fiber o~ 1(y)
(8) There is a nonempty open subset U C'Y where dim F = dim X — dim Y.

We studied the incidence correspondence
2 ={(X,0)|tcX}CP (Symd(k4)*) x Gr(2,4)
and its projections
X Lp (Symd(k4)*) ,
X 25 Gr(2,4).

We saw that s is surjective.
The fiber of £ € Gr(2,4) is

Ty L (l) = {(X,0) | X D ¢} = {surfaces of degree 2 containing (} x ¢
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and is 2 a linear space in P(Sym?) of dimension M — (d + 1), where
_ d+ 3 a1 d1.4\*
M—< 3 )—l—dlm{P(Sym (k%) )}
Study the other projection:

X Lp (Symd(k4)*) = {degree d hypersurfaces in IP’3} ~ pM,
The fiber of X € P (Symd(k4)*) is
m H(X) ={(X,0) | £C X} =X x {lines on X}.

So X € m(Z) <= X contains some line.
Consequence: If d > 4, then 7 can’t be surjective. “Most” surfaces of degree > 4 contain no
line: “The generic surface of degree d > 4 contains no line.”

12.5. Cubic surfaces. What about d = 37
2 5 P (Sym® (k%)) =PV,
and dim 2" = 19. Two possibilities:

(1) 7 is surjective <= generic fiber is dim0. “The generic cubic contains finitely many
lines.”

(2) m1 is not surjective <= there are cubic surfaces that don’t contain lines, and the fibers
are dim > 1.

In fact, the former is what actually occurs; 7 is surjective.
It suffices to find one cubic surface that contains finitely many lines:

X =V(X1XoX3 - X3) CP?
Ezercise 12.7. X contains exactly 3 lines, V(Xy, X;) for i = 1,2, 3.

The non-generic fibers have dim > 1, so these cubics contain infinitely many lines.
It turns out that the subset of cubic surfaces containing only finitely many lines

U CP? =P (Sym®(k*)")
consists exactly of the irreducible X = V(F).
Fact 12.8. m : Wfl(X) — U is finite of degree 27 over Y. On the subset of smooth cubic surfaces,
this map is exactly 27-to-1.
13. TANGENT SPACES

Intersection multiplicity (V,£),
Tangent line

Tangent space

Smooth point

13.1. Big picture. To any point p on any variety V', we will define a vector space T),V', the tangent
space to V at p, such that

(1) Given any regular map
VS w
p—q,

we get an induced linear map of vector spaces

v - W
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Goal: to define tangent space to a variety V at a point p € V.
Since tangency is a local issue, assume p = (0,...,0) € V C A" with V a closed affine algebraic
set.

13.2. Intersection multiplicity. We work out an example in detail.

Example 13.1. Let V = V(y — 2?) C A%, We calculate the intersection multiplicity of V with
¢ = {(at,bt) | t € k}. The intersection V N is given by

V ((bt) — (at)?) C £ C A%
Solving this:
bt — a’t> = 0
t(b—a’t) =0,

sot=0ort= a%. Hence the intersection points are (0,0) and (g, (2)2>

We get a “double intersection” point when b = 0. Get that ¢ is tangent to V at (0,0) because
the intersection multiplicity is V' and ¢ at (0,0) is 2.

More precisely, we will see that £ has intersection multiplicity 1 for all ¢ except when £ is the
z-axis, in which case the intersection multiplicity is 2.

Now we are ready to give a formal definition.
Definition 13.2. Let p=0¢€ V C A", and let I(V) = (F1,..., F,). Say
(= {(at,...,ant) |t €k} C A"

is a line through 0. The intersection multiplicity of V and ¢ at p, denoted (V,£),, is the highest
power of ¢t which divides all the polynomials

{Fi(ait, ... ’ant)}z‘:l,...,r )

Equivalently, look at the ideal of k[t] generated by {F'(a1t, ..., ant)}, where F(z1,...,2z,) € I(V).
That ideal is generated by some polynomial

£ = AT (=A™, Ai # 0.
Then (V,0)o = m.
13.3. Tangent lines and the tangent space.
Definition 13.3 (tangent line). A line / is tangent to V at p if (£, V), > 2.

Definition 13.4 (tangent space). The tangent space to V- C A™ at p, denoted T}V, is the set of
points (a,...,a,) € A" lying on lines £ C A™ which are tangent to V are p.

Ezample 13.5. Consider V = V(y? — 22 — 23) C A2, Take a line through the origin
0= {(at,bt) |t €k}.
The intersects are given by
(bt)? — (at)* — (at)® = * (b* — a® — a’t).
So the intersection multiplicity at the origin is 2. Note that all lines through (0,0) are tangent:
TV =A% =k
In other words, tangent lines are not always a limit of secant lines.

Theorem 13.6. Let p € V C A", where V' is a (not necessarily irreducible) closed subset of A™.
The tangent space T,V is a linear algebraic variety in A", and

dim 7T,V > dim, V.
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13.4. Smooth points.

Definition 13.7. A point p € V' is smooth if dim T,V = dim, V.

Proposition 13.8. Say 0 € V C A" and I(V) = (F1,..., F,). Then
ToV =V(Ly,...,L,) C A",

where L; = aj1x1 + - -+ + ainxy is the “degree 1 part” of F;, i.e.,
Fi=Li+F?+F% 4+ .

where Fi(j) is homogeneous of degree j in x1,...,Ty.

Proof. We have (ay,...,a,) € ToV <= (ai,...,a,) € £ which is tangent to V at 0 <=
{(alt, ooy apt) ‘ t e k} intersects V' with multiplicity > 2 at 0

< {Fi(art,...,ant), ..., F-(art,... ant)}

are divisible by 2. Observe that
Fi(ait, ... ,ant) = Li(ait, ..., ant) + Gi(ait, ... ant) =t - Li(a, ..., an) + Gi(ait, ..., ant),

and t? divides G;(ait, ..., ant). So

| Fi(aty,...,ant) <= Li(ai,...,a,) =0. O
Ezample 13.9. In V = V(y — 2?) C A2,

To,0)V =V(y) C A*.
Ezample 13.10. In V = V(y? — 22 — 23) C A2,
To0)V = A%

Remark 13.11 (Explicit computation of tangent spaces). To find T,V C A" for any p, center
everything at p = (A1,...,\,). Write all polynomials not in (z1,...,x,), but in (x1 — A\y,..., 2, —

An)-
Use Taylor expansion at p = (Aq,...,\p):
oF oF
F=F@p)+ —| (@1=A)+ -+ —| (zn—Ap)

0x1 » Oxy, »
linear part around p

1 0*°F

- — — )2+

+ 2 0zx? » (1 )7+

I 1 on : :
+ | —=— | | === F| (&1 =) (zp — )™
(maw) <zn!ale> ‘p( G )

Theorem 13.12. T,V =V(d,Fi,...,d,F,) C A", where I(V) = (F1,..., F}).
13.5. Differentials, derivations, and the tangent space.

Definition 13.13. Fix R = k[z1,...,x,), p € A" = k™. The “differential at p” is the map

klxi, ..., @) A, klxi,..., o5
gr—dyg =" 55| (2= ) € [Klrr = Ar.o 2 = Aally
i=1 tlp

linear form in (z;—\;)
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Caution: Not a ring map!

Fact 13.14. d, : R — R is a k-linear derivation, meaning:
(1) k-linear: d,(f + g) = dpf + dpg and d,(A\f) = Ad,f for all f,g € R, X € k.
(2) dp(fg) = f(p)dpg + g(p)dp f-

Last time: If
peV:V(fla"'7fT)gAn7 (flv-"7f7”):]1(v)7

then
T,V =V(dyfi,...,dpfr) = vector space in k" translated by p C (T,A") = k",

where d,, f; are linear forms in (z1 — Ai,..., 2, — Ap).
Why is this independent of choice of generators?

(gla"'vgt) - (fh'"?f'f) :]I(V) - k[(l?l,...,.ZUn]
Write g; = hifi1 + - -+ hy f, for some h; € R. Apply d:

dpgi = f1(p)dph1 + h1(p)dpf1 + -+ fr(p)dphy + Ry (p)dy fr-

Since p € V and f; € I(V'), we have f;(p) = 0. So dpg; is a linear combination of d,, fi,
Hence dpg; € (dy f1,...,dpfr), as was to be shown.
We have a surjective map

K[zt .. 2n] -2 (T,A™)*
afi—Ai'—){L'Z‘—/\i.
Note 13.15. dp(f) = d,(f + A). Replace f by f — f(p):
dpf =dp (f = f(p))-

So we can restrict to the (still surjective) map on m, = (z1 — Ai,..., 2, — Ay) C Efzq,. ..

my d—p> (TpA™)*

in—)\i'—>xi—/\i.

Say g € m,, is in the kernel of d,. Write g out as a polynomial in (z1 — A1,..., 2 — Ay):
9=9p)+dpg+G,
where each monomial of G is of degree > 2 in (x1 — A1, ..., Zn — An).

Since g € my,, we have g(p) = 0. Moreover,
dpg =0 <= QZGE(l‘l—)\l,...,xn—)\n)2.

So kerd, = mg.
This gives us a natural isomorphism:

m, d, .
ITTI% 7 (T,A™)".

o dyf

7xn]:

Theorem 13.16. Forp = (A,...,\,) € V. =V(f1,..., fr) CA™ with (f1,..., fr) =1L(V), let

mp:{f:VHk‘f(p):O}gk[V}.

There is a natural surjective vector space map
d
m, — (T,V)*
g=G|, — [dpG‘TpV:TpV—>k], G e kar, ..., zn],

whose kernel is m%.
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Proof. Why is this well-defined?

Say g = G}V = H‘V for some G, H € k[z1,...,x,]. Need to check that d,G,d,H € (T,A™)"
restrict to the same linear functional in T,V = V(d, f1,...,dpfr).

By considering G — H, say G € I(V). Need to show that d,G vanishes on TV, i.e., that

d,G € (dpfr,....dpfr).
We already showed that G = Hif1 +---+ H, f, = d,G € (dpf1,...,dpfr), provided p € V.
So we are done. O

Conclusion:
(T,V)" = mp/m?o

closed

as a k-vector space forany pe V. C A",

13.6. The Zariski tangent space.
Corollary 13.17. Consider an isomorphism of affine algebraic sets

VW

p—>q.
Then we have an isomorphism

kW] -2 K[V
m, = mg
mz = mg.
Le., the tangent space is an invariant of the isomorphism class of the variety at p.

Definition 13.18. The Zariski tangent space at a point p of a quasi-projective variety V is
(mp / m;)*, where m,, is the maximal ideal in the local ring of V" at p.

Recall: p € V variety.
Definition 13.19. The local ring of V at p is
Opv ={pek(V) ’ ¢ is regular at p} .

It has unique maximal ideal

my = {p € Opv | p(p) = 0}.
To compute O, v, choose any affine open neighborhood of p, say p € U C V. We have
m, C k[U] = Oy (U).
Then
Opv = k[U]n, 2 mpk[U]m,,.
This doesn’t depend on the choice of U.

Note 13.20.
m,  muk[Uln

m2 (mpk[U]mp)g'
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13.7. Tangent spaces of local rings.

—

Definition 13.21. For any local ring (R,m) (e.g., Zy,Zy)[z],Zp, convergent power series in

Z1,...,2r over C| etc.), define the Zariski tangent space as (m/mQ)*. This is a vector space over
the residue field R/m = k.

Theorem 13.22. For any local ring, dimy(m/m?) > dim R.

Definition 13.23. A local ring (R, m) is regular if dimy(m/m?) = dim R.

Ezample 13.24. If R = Oy, where p is a point on a variety V', then
(m/mz)* = (T,V),

the tangent space to V' at p, dim, T,V > dim,, V. (Proof in Shafarevich!)
Op,v is regular <= p is a smooth point of V.

Definition 13.25. (1) p € Vis smooth <= dimT,V = dim, V. (In general, Vp € V, we
have dim 7,V > dim,, V'.)
(2) The singular locus of V' is the set

SingV ={peV ‘ p is not smooth} = {p € V ‘ dim(7,V) > dim, V'} .

Ezample 13.26. Since dimZ,) = 1 and dim(p)/(p*) = 1, Z “is” the coordinate ring of something
like a variety which is smooth of dimension 1.

Ezample 13.27. Let p € (A1,...,A\,) € A", Then
dim(T,A") = dim(k") = n,

(ml—)\l,...,xn—/\n) —n
(:Bl—)\l,...,.%'n—)\n)z o

Le., A" is smooth at all points.
Theorem 13.28. The singular set of V' (a variety) is a proper closed subset of V.

Proof. We have Sing V' C V. To check that this is a proper closed set, it reduces immediately to
the case where V is affine.
Assume V =V(f1,..., fr) C A" with (f1,...,fr) =1L(V). Forpe V,

— ( Of;
T,V =V(dpf1,. .. dpfr), each d,f; = Z ((‘31‘~ (2; xj(p))> .
j=1 Jlp
Equations d, f1,...,d,f, can be written as a matrix:
aft of
o 2] [o W)
22 2 T — x2(p A
TpV — V Oz Oxn 2 ) 2( ) — ker <8fl) g An
: : : 9z; /|,
8 T 8 ™ J—
ut ok , Lo Zn(p)
So

dim 7,V = dim (ker(JMp)) = n — rank(J,).
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We have p € SingV <= dim7T,V > d <= rank (gy{;

))p<n—d = (n—d) % (n—d

subdeterminants of <g£ ’) all vanish at p. Thus
J

Sing V' = {p eV ’ (n —d) x (n — d) minors of <§fl) vanish at p}
Lj

afr of1
ox1 " Oxn
=V | codimension-sized minors of : . : nv.
Ofr A fr
ox1 " Oxn
It remains to show that it is proper! (|

Ezample 13.29. Consider V = V(2% + y% — 2%) C C3:
T,V =V (2z]p(z — 2(p)) + 2ylp(y — y(p)) — 22|p(2 — 2(p))) € C°.

This defining equation is a linear function in (z — A,y — A2,z — A3), nonzero <= some % is
K3
nonzero.
Hence, the dimension is 2 if A1, Ao, A3 are not all zero, and dimension 3 otherwise:

SingV =V NV (1x1(2x,2y,22)) =V NV(x,y,z) = {(0,0,0)}.

14. REGULAR PARAMETERS
Read Shafarevich, II, §2, 2.1, 2.2, 2.3.

14.1. Local parameters at a point. Fix V variety, p € V. Consider
Opv = {p € k(V) | ¢ is regular at p},
the local ring of V' at p. The maximal ideal is m C O, v, the regular functions vanishing at p.
Recall:
Definition 14.1. p is a smooth (or non-singular) point of V' iff
dimy, m/m? = dim, V
(> always holds).

Fix V variety of dimension d, p € V smooth point.

Definition 14.2. Say regular functions ui,...,uq € m, in a neighborhood of p € V are regular
parameters (or local parameters) at p if their images in m/m? are a basis for this vector space.

Ezample 14.3. If p= (A1,...,\g) € A? then {z1 — A1,...,2qg — \g} are local parameters at p.
Ezample 14.4. p = (1,0) € V = V(2% +y? — 1) C A2, The dimension is 1. Note that V is smooth
(for char(k) # 2):
SingV =V NV(2z,2y) = V(z? + ¢* — 1,22,2y) = @.

We have

klz,y]
(22 +y>—1)
m/m? (dim 1) obviously spanned by {z — 1,y}. In O, v,

OZ%V: ‘($—1,y);)m,

y? e m2.

(x —1)(z+1) Yy = = |
2

Thus y is a local parameter for V at p = (1,0), since ¥ in m/m? is a basis for m/m?.
In other words, y generates m as an O, y-module.
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14.2. Nakayama’s lemma.

Lemma 14.5 (Nakayama). Let (R, m) be a local Noetherian commutative ring, and let M be a
finitely generated R-module. FEvery vector space basis for M /mM over R/m lifts to a (minimal)
generating set for M as an R-module.

We apply this to R = O,y 2 m and M = m: Every vector space basis ut,...,uq for m/m? lifts
to a (minimal) generating set ug, ..., ug for m.

14.3. Embedding dimension.

Definition 14.6. The embedding dimension of a point p on a variety V (not necessarily smooth)
is the dimension of m,/m?.

Fact 14.7. The embedding dimension at p is > the dimension at p, with equality <= pis a
smooth point of V.

Theorem 14.8 (Transverse intersection). Let uq,...,uq be local parameters at a smooth point
p € V. The subvariety V(u;) C V s also smooth at p; of codimension 1, and furthermore,
V(wiyy .. ui,) €V is smooth at p of codimension t.

Proof. We have p € V; = V(u;) & V and a ring map given by modding out by Rad(u;),

Op,Vi Op,V

restriction

Ul Ul

Wy, «————— MpV,

and we have m, v, = (4, Uz, ...,uq) and m,y = (u1,...,uq). Since u; = 0, we have
d—1<dim,V; <dim7T,V; = dim —5 <d — 1.
m
P

Hence d — 1 = dimT,,V; = dim,, V;, so p is a smooth point of V;.
Similarly, take p € V; = V(uq,...,u;) C V. Then

m=(u,...,uq) = (Wi, Uq) € Opy;.
So o
dim, V; < dim — < d —t < dim, V7,
m
hence equality holds and we are done. O

Ezample 14.9. Let p = (0,0) € A%2. Then {y — a:2,a:} are local parameters at (0,0), and are said
to intersect transversely.
However, {y — 22, y} are not local parameters at (0,0) € A2, and do not intersect transversely.

14.4. Transversal intersection at arbitrary points. For a point p (not necessarily smooth) on
a variety V, and elements u1,...,u, € m C O, v, the following are equivalent:

(1) ui,...,u, minimally generate m (as an ideal of O v ).

(2) The images g, .. ., U, are a basis for m/m?.

(3) Their differentials dpus, ..., dyu, are a basis for (T,V)*.

(4) The subspace of T,V defined by the zero set of the (n = dim7,V) linear functionals
dpui, ..., dpuy, is 0.

3
4

Fact 14.10. If p is smooth, then n = dim V', and any set {uy,...,u,} satisfying these equivalent
conditions is called a system of “local parameters at p”.

In this case where p is smooth, these are equivalent to:
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(5) The inclusion k[uq, .. .,un](uh_”’un) C O,y becomes an equality when we complete with
respect to the maximal ideals (u1,...,un) C Kklu1, ..., Un](u,,...u,) and m C Opy, and we
get

Elui, ..., up]] = Opy.

14.5. Philosophy of power series rings. Philosophy: Fix p € V', and let U be an affine patch
containing p. Then

Ov(U) C Opy = Oy,
where

e Oy (U) is the coordinate ring of an affine patch U containing p, “functions regular on U”;
e O,y is “functions regular on some Zariski-open subset of V' containing p”;

e O,y is “functions on an even smaller (analytic, not Zariski) neighborhood of p”.
For example, if p =0 € A™, we have

1
R = /{[xl, - ,$n] — k[l‘l, . ,xn] |:$1 — :| — Rm = k:[:vl, . ,azn](m?._.,xn) — k:[[xl, - ,:L’n]] .
The ring k[z1,...,x,] includes “functions” on an “even smaller” open neighborhood, including
things like
! — —1l -z —a —ah — ...

T — 1
and ) . .

“,o Ty ﬁ ﬂ ﬁ

e —1+$1+2!+3!+4!+...

These inclusions induce maps of the spectrums in the opposite direction:

“A"™ = Specklzy,...,x,] +— Spec R [ ] = Uy, —1 — Spec Ry, «— Speck[x1,...,z,].

1 — 1
14.6. Divisors and ideal sheaves.

Theorem 14.11. Let Y C X be a codimension 1 subvariety of a smooth variety X. Then Y is
locally defined by a vanishing of a single regular function on X at each point p € X.

More precisely: If Y is a codimension 1 subvariety of a smooth variety X, then Vp € Y, there
exists an open (affine) neighborhood p € U C X such that (p € Y NU C U affine) the ideal

Iy(YNU) CklU]=0x(U)
of Y NU in U is principal.

Caution 14.12. Even if X is affine already, we can only expect Y to be locally defined by one
equation.

There is an alternative (equivalent) formulation in terms of sheaves:

Definition 14.13. Fix a closed set W in a variety V. The ideal sheaf of W, denoted .#y, assigns
to each open U C V the ideal

Iw(U) ={fe€Oy(U)| flp)=0Ype W} C Oy(U).

Theorem 14.14. IfY is a codimension 1 subvariety of a smooth variety X, then the ideal sheaf
Hy is locally principal in Ox .

This means: Vp € X, 3 open affine neighborhood U > p such that % (U) C Ox(U) is principal.
Remark 14.15. If p ¢ Y, then 3U > p such that Y NU = @, so Ay (U) = Ox(U) = (1) is principal.
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Equivalently, the condition that .#y be locally principal means: Vp € X, the ideal .#,y C O, x
defined by

peU, glp)#0, flg) =0VgeYNU
= {go € Opx }  vanishes at all points of Y in some neighborhood of p}

has a representative L where f,9€ Ox(U),
Jp,y:{goeo,x‘w L )

is principal. This is called “the stalk at p” of the sheaf .#y. (Recall that O, x = the localization
of Ox(U) at the maximal ideal m, C Ox(U), where u is any open affine neighborhood of p.)
We have an inclusion of sheaves .%y C Ox, which induces an inclusion of an ideal in a ring

Hy(U) € Ox(U).
By localization at m,, this induces
Iy (U) =Sy COpx.
Now we prove the theorem.

Proof of Theorem [1}.14 Need to show: Vp € X, the ideal .%,y C Ox,, is principal.
Step 1: Oxp is a UFD. [More general theorem: Every regular local ring is a UFD.]

Sketch: Ox, is a UFD <= 6);, is a UFD <= kfu,...,uq] is a UFD. Math 593
exercise: A is a UFD = A[u] is a UFD.
Step 2: Fixpe Y C X, Y codimension 1 in X. Without loss of generality, X is affine. We have

Iy Cm, C k[X] = Ox(X).
Take any nonzero h € Iy C m,. Look at the image of h in the UFD Ox ,, and factor h
into irreducibles
h=git - gi" € Iyp,

where g; € Ox . Thus some g; € Iy,,.
[Alternatively, pass to smaller open affine neighborhood U of p where each g; is regular.
Then

h=gi gt € V(U),

which is a prime ideal in Ox (U), so g1 € Ay (U).]
Because g; = g1 is irreducible in a UFD, it follows that (g;) is a prime ideal of Ox .
Consider: in U,

YNUCV(g)CUCX.

We have dimU = dim X = d and dimV(g;) =d—1. If YNU C V(g1) is a proper inclusion,
then Y NU has dim < d — 2, since a proper subset of an irreducible variety has smaller
dimension. Hence Y NU = V(g1). O

Caution 14.16. The theorem can fail for non-smooth X. For example, consider
p=0€Y =V(z,2) S X = V(zy — zw) C A",
We have dimY = 2 and dim X = 3. See that

k:[:L‘a Y, =z, w](ﬂf,yvsz)

Ty — ZW

Iy = (xuz) - k[X](:c,y,z,w) =
cannot be generated by 1 polynomial. Note: k[X](,y .. is not a UFD.

4Shafarevich, Appendix §7



MATH 631 NOTES ALGEBRAIC GEOMETRY 43

15. RATIONAL MAPS

15.1. Provisional definition. Fix a variety V. A rational map V -¥> A" is given by rational
functions coordinate-wise:

V--->A"
x— (p1(2), ..., on(x)) where p; € k(V).
Note 15.1. Each ¢; is regular on some open (dense) subset U;. So
V-LrAn
o0
U
is a regular map on U = Uy N ---NU,.
For
V- pn
z— [po(z) : -+ ()],

take ¢; € k(V') and say ¢; has domain of definition U;. This is regular on the dense open subset of
v

UoN---NU N [(VAU)\V(0|y- - 0nly)] -

—_— ———

U
Example 15.2.

AZ-2> P!
(z,y) — [z :y] = E:l] = [1:g].

X

Defined on A2\ {(0,0)}.
We can represent ¢ by ¢y, : U, = A%\ V(z) — P!, and also by

ean (0,0} : A7\ {(0,0)} — P!
(2,y) — [z : 9.
15.2. Definition of rational map.

Definition 15.3. A rational map X -¥->Y between varieties is an equivalence class of regular maps
{U v, Y} (with U C X dense open subset), where

U 2% Y]~ [U 295 Y]

means oy and g agree on U N U’ (or equivalently,

@U‘ﬁ =PUlg

for any dense open subset of U N U’).

Note 15.4. If two regular maps agree on some dense open set, then they agree everywhere they are
both defined.

Proof sketch. Since regular maps are locally given by regular functions in coordinates, it suffices to

check that if ¢, ¢’ are regular functions X sk, X 25 k and go‘ﬁ = cp"ﬁ, where U C X is an
open dense set, then
(p—¢): X — k
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is regular. Its zero set contains U and is closed, hence the zero set contains U = closure of U in X ,
so ¢ — ¢’ is zero on X. Thus, ¢ = ¢’ everywhere on X. ([l

In practice: A rational map is given by
X-SY Cpm
z— [po(@) - om()],
where ¢; € k(X).

Definition 15.5. A rational map ¢ : X --->Y is reqular at p € X if ¢ admits a representative
ULy such that p € U.

The domain of definition of ¢ is the open subset of X where ¢ is regular. The locus of indeter-
minacy is the complement of the domain of definition.

15.3. Examples of rational maps.

(1) A rational map X --> A} is the same as ¢ € k(X).
(2) Every regular map X — Y is a rational map. (The domain of definition is X, and the
locus of indeterminacy is &.)
For example:

P! --->P3

[s:t] — [s 8%t st? 1 1] = [12(2)2@)3]

Note that k(P') =k (£).
(3) The map used in the blowup (to be studied in more detail later):

A?--->P!
(x,y) — {the line through (z,y) and (0,0)} = [z : y]

The locus of indeterminacy is {(0,0)}.

15.4. Rational maps, composition, and categories.

Caution 15.6. A rational map is not a map!
In particular, we cannot always compose rational maps.

Ezample 15.7. Here’s an example that shows why we can’t compose rational maps:
P! £, p3 -2 pi
[s: 8] — [s%: 8%t st? 1 8%
[w:z:y:z]— [wz—my:xQ—wy:yz—xz]
Caution 15.8. “ip o ¢” =1[0:0:0 : 0], which is nonsense.

Note 15.9. There is no category of varieties over k with rational maps as morphisms.

However, there is a category whose objects are algebraic varieties over k and whose morphisms
are dominant rational maps.

Isomorphism in this category is birational equivalence.
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15.5. Types of equivalence.

Note 15.10. Birational equivalence is much weaker than isomorphism of varieties. For instance:

A2-25 2 £05 A2
(z,y) — [z :y: 1]

oy (50).
so A? and P? are birationally equivalent. Also,
P?--->P! x P!
[2:y 2= ([w: 2] [y : 2))
U, — Uy x Uy,
so P? and P! x P! are birationally equivalent.

In order of increasing strength and difficulty:

e (Classify varieties up to birational equivalence
e (Classify varieties up to isomorphism
e (Classify varieties up to projective equivalence

It turns out that birational equivalence and isomorphism are the same for smooth projective
curves, for which we have a complete classification.

15.6. Dimension of indeterminacy.

Theorem 15.11. If X is smooth and X -2>P" is a rational map, then the locus of indeterminacy
has codimension > 2 in X.

Example 15.12.
P2 -¥5 P! x P! < P?
[@:iy:2]— ([z:2][y:2])

The locus of indeterminacy W C P? is either empty or dimension 0 (i.e., finite).
In fact, W ={[0:1:0],[1:0:0]}.

Corollary 15.13. If X is a smooth curve and X -->P™ is a rational map, then ¢ is regular
everywhere.

Corollary 15.14. If two smooth projective curves are birationally equivalent, then they are iso-
morphic.
Proof. Say X ~ Y are birationally equivalent. Then the rational map X -2>Y C P™ is a regular

-1
map X — Y. Reversing roles of X and Y, Y ¥-> X C P" is also regular. So

X"y 22 X,
S~
id

thus X Y. OJ
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15.7. Dimension of indeterminacy, continued.

Ezample 15.15. Let X =V (23 + --- + 22) C P" (char # 2).
Pick any p € X, project from it. Then we have

Tp
P?— —> ]Pm—l
b
Ul -

/7rp
7

X

and X -"%> P! is a rational map.

Case I: dmX =1 (n=2): X -2, P1 must be regular everywhere by Theorem [15.11
So we have a map

Tp

P2OV(@?+¢y? -2 =X P!

which is regular everywhere, and fact is an isomorphism.
Case 2: dim X > 2: The rational map is not regular everywhere. For dim X = 2, we have

P3
N
N
Ul I
Tp M
X- == 2P
Ul
regular
X —{p}

The locus of indeterminacy is {p}. Codimension is n — 1 = dim X.

Now we prove:

Theorem (15.11). If X is smooth, then the locus of indeterminacy of a rational map X -+-> P"
has codimension > 2.

Proof. Let X be smooth, X -%>P" a rational map, W = locus of indeterminacy C X.
Then W is (locally at p) a hypersurface. For all sufficiently small affine open neighborhoods U
of p, UNW =V(g) C U, where g € Ox(U). We have

X --->P"
z— [po(x) - on(@)],

where ¢; € k(X) = fraction field of k[U]. Without loss of generality, ¢; € k[U].
Because p € W = locus of indeterminacy, we know p € V(po,...,¢n) C U. Then

peWnNU CV(po,...,pn) CU affine.

By the Nullstellensatz,

so g divides each ¢; (in k[U]).
Note: O, x is a UFD, so we can factor ¢y, ..., ¢, into irreducibles and cancel out any common
factors. Thus, without loss of generality, the ¢; do not have a common factor! O
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15.8. Images and graphs of rational maps.

Definition 15.16. The image of a rational map X —= Y is the closure in Y of the image of any
representing regular map U ULy

Check: This does not depend on the choice of ¢r. Indeed,
eu(UNT’) Cou(U) = op(U).
Recall: The graph of a regular map X 5V is the set
Dy = {(@,p(@))} € X x V.

This is a closed set isomorphic to X. (Check: vertical line test.)

Definition 15.17. The graph I', of a rational map X -%5Y is the closure in X x Y of the graph
of any representing regular map U Uy,

Check: This is independent of representative.
Note 15.18. T',, is birationally equivalent to X.
Ezxample 15.19.
AZ-Z>p!
(x,y) — {line through (z,y) and (0,0)} = [z : y].
Consider on A2 — V(z) = U, C A?. Then
U, = A% — (y-axis) — Uy = Al — P!

(x,y)%%—)[l:%}:[:c:y],

noting that £ is the slope of the line through (0,0) and (z,y).

16. BLowING UP
16.1. Blowing up a point in A". Choose coordinates so the point is 0. Let
B={(p,0)|pel} CA" x P,

In coordinates,

yr - Yn

—V<2><2minorsof [xl x”})
Yy -+ Un

=V ({ziy; —zjyi | i < 1,5 <n}).
Definition 16.1. The blowup of A™ at 0 is the variety
B={(p,0) ‘peﬁ} C A" x P!

B:{((l’l,---al‘n);[yl3"'3yn]) | rank [xl x”] Sl}

together with the projection B — A”.

Note 16.2. (1) 7 is surjective, and one-to-one over A™\ {0}.
Also, 7 is birational (i.e., a birational equivalence) with rational inverse

A" TS B C A" x Pl

(@1, an) > (@1, @) [ e ).
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(2) B is the graph of the rational map
@ : At --->pnt
(X1, ey ) —> [x1 1 sz,
and B — A is projection to the “source”.

Intuition again: B is “like A™” except at 0; we’ve removed 0 from A" and replaced it by the set
of all directions approaching the origin.

Proposition 16.3. B is a smooth (irreducible) variety of the dimension n.

Proof. We have B C A" x P"~! D (A" x U;), where U; = A"~ ! is a standard affine chart. It suffices
to check that each BN (A" x U;) is smooth.
For simplicity, we do the case ¢ = n.

Claim 16.4. BN (A" x A" 1) =5 A™,
Observe that

BN (A" x A" ) = {(z1, ..., @n)i[y1 s 1yl | Yo £ 0, iy = xjvi )
:{(:L‘l,...,xn); [yl:---:yn_1 :1} ‘xj:xn (yj>}
Yn Yn Yn
We have an isomorphism
BNU %5 A"
<($1,...,xn); [yl foy oL 1}) — (yl,...,yn_l,xn>
Yn Yn Yn Yn
-1
BNU &— A"
((tnt1, . tntp—1,tn); [t oot b 2 1)) < (E1, . tn—1, tn)- O

16.2. Resolution of singularities.

Theorem 16.5 (Hironaka, 1964). If k has characteristic 0, then every affine variety V admits a
~ closed
resolution of singularities, i.e., 3 smooth variety V. C A" X P™ such that the projection onto the

first factor A™ x P™ — A™ is a birational map ©:V — V when restricted to V.
Furthermore, 7 is an isomorphism over V \ Sing(V'). The fibers are all projective (over C, all
compact), i.e., ™ is a proper mapﬂ

16.3. More about blowups. Recall: The blowup of (0,0) in A? is the graph of the rational map
A?-¥5 P! = lines through (0,0) in A?
(z,y) — [z : 9]
together with the projection onto the source
{(p,ﬁ) ‘peﬁ} :B:DPL)AQ.
Note 16.6. (1) The map 7 is a projection, birational. In fact, 7 is an isomorphism over the

domain of definition of .

5The technical definition of “proper map” in algebraic geometry is more complicated, but agrees with the other
definition over C. In any case, 7 is a proper map in the algebraic geometry sense.
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(2) The fiber over the locus of indeterminacy {(0,0)} is

losed closed

(0,00 xPLC B C A2 xP!
is a smooth, codimension 1 subset of B.
What happens if we graph a different rational map?
A3-Y5pl
(z,y,2) — [z : y] = normal line to L = the z-axis

This is an isomorphism on A®\ L, and is birational on A3.

The fiber over the locus of indeterminacy L is L x P* C I',, which is a codimension 1 subvariety
of I'y.

This is called the blowup of A® at the line L (or the blowup along the ideal (z,v)).

16.4. Blowing up in general.

Definition 16.7. Let V be an affine variety, and let fy, ..., f, be nonzero regular functions on V.
The blowup of V along the ideal (fo, ..., fr) is the graph of the rational map
V-Spr

x+— [fo(z): - fr(x)]
together with the projection N
VP OV =T, 5V

Definition 16.8 (projective map). A projective map X Tiyvisa composition

proj. onto
chlosed Y x P 1st coord. %
f
Remark 16.9. (1) Since ¢ is rational on V. —V(fo,..., f,), 7 : V — V is an isomorphism over

V —V(fo,..., [fr), i.e., is birational.
(2) This depends only on the ideal generated by (fo,..., fr), not the choice of generators: Say

(fos--s fr) = (90, 9m) S k[V]. Then
V x P’ V x P

) Ul
3 isomorphism
r, > L

A

(3) If (fo,..., fr) is radical, defines a subvariety W C V', then we also say “blowup of V' along
w”.
If W C V is smooth, then the blowup V' “looks like” V' with surgery performed: remove
W, and replace it by all directions normal to W in V.

Ezxample 16.10. Blowup of (1:2,y2) in A2: The graph of

A2-Zypl

(z,y) — [2% : ]
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We have
A% x P! DV(uy® —va?) =T, — A%
(zy)  [w]

So blowing up can sometimes make things “worse”!

16.5. Hironaka’s theorem.

Theorem 16.11 (Hironaka’s theorem on resolution of singularities). Suppose chark = 0. For any
affine variety V', there exist fo, ..., fr € k[V] such that the graph of the rational map

V-£pr
zr— [fo(z) i+ fr()]

is smooth. The map V= r, TV is projective, birational, and an isomorphism over V' \ Sing V.
Furthermore, 7=1(Sing V') is a smooth, codimension 1 subvariety of V.

17. DIVISORS

17.1. Main definitions. Fix an irreducible variety X.

Definition 17.1. A prime divisor on X is a codimension 1 irreducible (closed) subvariety of X.
A diwisor D on X is a formal Z-linear combination of prime divisors

t
D= ZkiDi, ki€ Z.
=1

Example 17.2. In P2, here are some prime divisors:
C =V(zy — %) CP? Ly = V(z), Ly = V(y).
Here are some divisors which are not prime: 2C,2L; — Lo.
Definition 17.3. We say a divisor D = Zle k;D; is effective if each k; > 0.
The support of D is the list of prime divisors occurring in D with non-zero coefficient.
The set of all divisors on X form a group Div(X), the free abelian group on the set of prime

divisors of X.
The zero element is the trivial divisor D =) 0D;, and

Supp(0) = @.
Ezxample 17.4. Consider

t — ar ... (t — n an
_ f _ ( Al)b ( A )b c ]{J(Al) — k(t),
g (=) (= )’
where f, g € k[t] (assume lowest terms).
The “divisor of zeros and poles” of ¢ is

ar{M}+az{ X} + - Fan{ A} —br {pi} — - — b {um}-
(divisor of zeros) (divisor of poles)

Ezample 17.5. Let A" = X. A prime divisor is D = V(h), where h € k[x1,...,x,] is irreducible.

Write u
B f B fll...fgn
P= T b
9 g1 " 9m
where f, g € klz1,...,z,] and f;, g; irreducible, a; € N.
Denoting the divisor of zeros and poles of ¢ by div(y), we have

le((p) = CL1V(f1) + a2V(f2) +e anV(fn) - blv(gl) — me(gm)
Note 17.6. Every divisor on A" has the above form.

€ k(A™) = k(x1,...,20),
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17.2. The divisor of zeros and poles. In general, on almost any X, we will associate to each
¢ € k(X) \ {0} some divisor, div(y), “the divisor of zeros and poles”, in such a way that the map

K(X)* = k(z) \ {0} — Div(X)

pr—divy = Z vp(p) - D
DCX
prime

preserves the group structure on k(X)*, i.e.,
(p1 0 p2) — div g + div pa.
The image of this map will be the group of principal divisors:
P(X) C Div(X)

The quotient Div(X)/P(X) is the divisor class group of X.
Remark 17.7. If X is smooth, then the divisor class group is isomorphic to the Picard group.
Remark 17.8. The kernel of k(X)* v, Div(X) consists of ¢ € k(X) such that ¢, p~! are both
regular on X.
Remark 17.9. We will write

leSOZ E VD(SO)'Da
DCX
prime

where vp(p) = ordp(¢) = “order of vanishing of ¢ along D”.
Ezxample 17.10.

o= = € k(z,y) = k(A2)

Y
div(p) = Z VD (:C) D,
DCA? Y
prime
where vp (%) is 0 for all divisors D except for L; = V(z), where the order of vanishing is 1, and

Ly =V (y), where v, (p) = —1.
To define div(p) for ¢ € k(X)*, we need to define vp(p) for every every divisor D. We will do
this under the following assumption: X is non-singular in codimension IH In this case, we have
X O Xgm = X — Sing X
Div(X) — Div(Xem)

Z a;D; — Z CLZ(DZ N Xsm)-
7 %

To get an idea of how this will work, assume X is smooth and affine, and let ¢ € k[X]. Any
prime divisor D C X is locally principal, i.e., locally D = V().

“D is a zero of ¢” means that D C V(p), meaning (7) 3 . Look at the largest k such that
@ € (%), ie., p € (nF)\ (7**1). This is vp(p) = k.

17.3. Order of vanishing. Goal: Define “order of vanishing” of ¢ € k(X) \ {0} along a prime
divisor D, denoted vp(yp) € Z.

This is done only under the assumption that X is non-singular in codimension 1 (i.e., Sing X
has codimension > 2).

6This means that Xging € X has codimension > 2.
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Case 1. Say X is affine, ¢ € k[X], D = V(7) is a hypersurface defined by = € k[X].
We say “p vanishes along D” provided that D = V(7)) C V(¢). So by the Nullstellensatz,
(p) C (7). It could be that ¢ € (72) or (72) or some higher power.

Definition 17.11. The order of vanishing of ¢ along D, denoted vp(yp), is the unique integer
k > 0 such that ¢ € (7%) \ (7FF1).

Note 17.12. vp(p) =0 = ¢ € (7V) \ (71) = k[X]\ (7), i.e., ¢ does not vanish on all of D.

Can it be that ¢ € (%) Vk? If so, then ¢ € ﬂkzo(”k)a which remains true after localizing at
any prime ideal of k[X] containing 7 (e.g., () itself).
Lemma 17.13. If (R, m) is a Noetherian local ring, then

ﬂmtzo.

>0
Thus, if ¢ € ﬂkzo(ﬂk), then ¢ = 0.

Note 17.14. vp has the following properties:

(1) vp(e-¥) =vp(p) +vp(¥).
(2) I o+ # 0, then vp(p +¢) > min {vp(p),vp(¢¥)}.

Case 1b. If ¢ is rational and ¢ = g, where f, g € k[X], define

vp(p) = vp(f) —vp(9)-
Case 2. General case: ¢ € k(X) \ {0}, D C X arbitrary prime divisor.
Choose U C X open affine such that

(a) U is smooth;
(b) UND # @;
(c¢) D is a hypersurface: D = V() for some 7w € k[U] = (’)X(U)m
We have ¢ € k(X) = k(U). Define vY(y) as in case 1.
Claim 17.15. This doesn’t depend on the choice of U.
Proof. Say Uy, Us both satisfy conditions (a), (b), (c). To check I/gl(ap) = ng(cp), it suffices to
check ygl(go) = 1Y (p) for any U C U; N Uy satisfying (a), (b), (c).

Fix U; 2 Us. We have o € (7%) \ (7F*1) in k[U;] = Ox(Uy), and after restricting to k[Us] =
Ox (Us), the condition ¢ € (%) \ (7%+1) still holds. O

So define vp(p) to be vY(p) for any U.
17.4. Alternate definitions of order of vanishing.

17.4.1. Alternate definition 1. Let D C X be a prime divisor, ¢ € K(X). Pick any smooth point
x € X such that € D. The local ring

O x = {p € k(X) ‘ ¢ is regular at '}
is a UFD. The equation of D in O, x is = (m) C O, x, where 7 is an irreducible element in the
UFD.
Writing ¢ = 5 with f,g € O, x, ¢ factors uniquely as
ar ... far
— 7Tk fl r

i b bs
gll gs

"We can do this by our earlier theorem that a codimension 1 subvariety is locally a hypersurface.
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with f;, g; irreducible. Then

vp(y) = multiplicity of 7 in the unique factorization in O, x.

17.4.2. Alternate definition 2. Let D be a prime divisor on X (non-singular in codimension 1).
Look at the ring

Op,x = {p € k(X) } ¢ is regular on some open U such that UND # @} = kU] 7wy

the local ring of X along D. We have U D DNU # @ and k[U] D #p(U).
Choose U satisfying (a), (b), (c¢). The maximal ideal of Op x is (), generated by the single
element 7.
Observe that Op x is a local domain whose maximal ideal is principal, i.e., a discrete valuation
ring.
Definition 17.16. A discrete valuation ring (DVR) is a Noetherian local domain with any of the
following equivalent properties:
(1) It is regular of dimension 1.
(2) The maximal ideal is principal, ().
(3) It is a UFD with one irreducible element, 7.
(4) Every nonzero ideal is (7') for some t € Z>(.
(5) Normal of dimension 1.

Then we can define vp(p) = t, where ¢ is obtained as follows: We have
ODJ( - k‘(X)

Write ¢ = 5, where f,g € Op x. Then

f = (unit) - 7", g = (unit) - 7™,
and
vp(p)=n—m=t.

17.5. Divisors of zeros and poles, continued. Now we get a way to define a “divisor of zeros
and poles” associated to every ¢ € k(X), namely,

div(p) = 3 vn(p)D.

DCX
prime
To see that this is a finite sum: when X is affine, write ¢ = g, and observe that div¢ has
support contained in

V(f)UV(g) = (DyU---UD,) U (D} U---U D)),
so finiteness of the sum follows from quasi-compactness of the Zariski topology.

17.6. Divisor class group, continued. Recall: For a variety X which is non-singular in codi-
mension 1, we defined the “order of vanishing vp(¢) of ¢ € k(X)* along a prime divisor D”; vp is
the valuation of k(X) associated with the DVR Op x.
This gives a group homomorphism
(k(X))* 2% Div(X)
pr— div(p) = Y vp(p) - D.
DCX

prime

We defined the subgroup P(X) of principal divisors to be the image of div : k(X)* — Div(X).
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The cokernel of div : k(X )* — Div(X) is the divisor class group of X,
Div(X)

CUX) = gy

Ezample 17.17. CI(A™) = 0.
Proposition 17.18. CI(P") = Z, generated by the class of a hyperplane H = V(apxo+ -+ anxy).

Definition 17.19. If D; = V(G;) C P" is a prime divisor, where G; is an irreducible homogeneous
polynomial in k[zg, ..., x,], we define the degree of D; to be the degree of Gj.

Proof of Proposition|17.18 We have a surjective homomorphism
Div(P") X%, 7,

t
D= kDY kidegD; =Y k;degG;.
=1

Say D =3"'_ k;V(G;) € Div(IP’”) is in the kernel of deg : Div(P") — Z. Then

ZkV Zal va Jdeg

This is the divisor of zeros and poles of

Ft - For ki
= =" G € k(P
H ... HY Hl ().
Therefore,
Div(P")
(P")= ———==7
by the first isomorphism theorem. O

Caution 17.20. There is no inherent notion of degree of a divisor on arbitrary X (though okay for
P A" curves).

17.7. Divisors and regularity.

Theorem 17.21. If X is smooth (or even just normal), then ¢ € k(X)* is reqular on X if and
only if div ¢ is effective (denoted divp > 0).

Remark 17.22. ¢ regular = div > 0 is clear.
17.8. Commutative algebra digression. Let R be any domain, and let K be the fraction field.

Definition 17.23. The normalization of R is the integral closure of R in K. (This is a subring of
We say R is normal if R is equal to its normalization R.

We have the inclusion

R—-RCK
into the integral closure.
Ezxample 17.24. Consider the ring
klz, y]
R= y2 — 23

We have
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so ¥ is integral over R in the fraction field Frac(R). Can check that
klz,y, 2]
(y* — 23,22 —y)

Note that normalizing gets rid of the singularity. The above inclusion induces a finite birational
map of varieties.

R< R=

& [%] = k[t] C Frac(R).

Fact 17.25. Normality is a local property: R is normal <= Ry is normal Vm € mSpec R <= R,
is normal Vp € Spec R.

This lets us make the following definition:

Definition 17.26. Let X be a variety. We say X is normal if any of the following equivalent
conditions hold:

(1) For all points x € X, the local ring O, x is normal.

(2) For all subvarieties W C X, Ow x is normal.

(3) There exists an open affine cover {U,} such that each Ox(Uy) = k[U,] is normal.
(4) For every open affine U C X, Ox(U) is normal.

Fact 17.27. All smooth varieties are normal. If X is dimension 1, then X is smooth <= X is
normal.

Fact 17.28. If a ring R is normal and p is heighiﬁ 1, then R, is a DVR.
Theorem 17.29. Let R be a domain with fraction field K. Then

R= () R,CK.

peSpec R
height 1

Now we can prove the theorem from earlier:

Proof of Theorem [17.21 Say ¢ € k(X) and dive > 0. It suffices to check go‘U, where U is affine
open in X, is regular.
On U, we have ¢ € k(U) = k(X) with divpy ¢ > 0. All vp(p) >0, s0 ¢ € Op x VD. Thus

vc (] Obx= () Ry=R=0x(U). O
D prime in U p ht. 1

17.9. Divisors and regularity, continued. Recall:

Theorem ((17.21)). Let ¢ be a nonzero rational function on a normal variety X. Then ¢ is reqular
on X <= divp is effective.

E.g., on P", there are no nonzero principal effective divisors (i.e., divyp > 0 = ¢ is regular on
P —= pek\{0}).
More generally, for any U open in a normal variety X, the following are equivalent for ¢ € k(X)*:
(1) ¢ € k(X) is regular on U.
(2) ¢ has no poles on U.
(3) divy on U is effective.
(4) vp(p) > 0 for all divisors D with DNU # @.

Also, the following are equivalent:
(1) divy p = 0
(2) o regular in U, ¢~ regular on U.
(3) ¢ € O%(U) = subgroup of invertible elements of the ring Ox (U).

1

8The height of a prime p € Spec R is the Krull dimension of Rj.
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Example 17.30. Let X = P? and

Then
Supp(divy) = C ULy U Ly = V(22 + % — 22) UV(z) U V(y),
and
divps © = 2C — 3L, — Ly
divy, p =2C — 3Ly — Lo
divy, ¢ =2C — Ly
divy,nu, ¢ = 2C.

Since 2C is effective, Theorem [17.21|implies that ¢ € Op2(U, NUy).
Also, denoting U := U, NU, NUy2y,2_,2, we have divy ¢ = 0, so ¢ € O, (U).

18. LOCALLY PRINCIPAL DIVISORS

18.1. Locally principal divisors. Important idea: If X is smooth, then every divisor on X is
locally principal.

Fix D = Zle k;D; divisor on X, with X smooth.

Take any x € X, and choose a neighborhood U = U, of x such that D; is the vanishing set of
some irreducible m; € Ox(U) (i.e., #p,(U) = (m;), or equivalently, D; N U = divy m;).

On U, D is principal, and we have

DNU = divU(ﬂ'i‘;1 i),
Example 18.1. In the setting of our previous example in P?, D = 2C — L; has degree 3, so it is not

globally principal.
However, D is locally principal. Let

(1,2 + yz _ 22)2 (ac2 + y2 . 22)2 (a:2 + y2 . z2)2
Y1 = 4 ) Y2 = 3 ) Y3 = 3 .
T Ty Tz
Then
divy, p1 = DN Uy, diVUy po=DnN Uy, divy, w3 =D NU,.

Remark 18.2. On U, NU,, ¢1 and @2 have the same divisor C
< divy,nu, ¢1 = divy,nu, w2 <= divy,nu, (91/p2) =0 <= % € Ox (U, NUy).

Now we give the formal definition.
Definition 18.3. A locally principal (or Cartier) divisor on a variety X is described by the following
data:

e {Ux},ca open cover of X,
e ¢y € k(X) = k(Uy) rational function on X

such that @) - cp;l € 0% (UxNU,) for all A\, u € A.

The corresponding (Wei]ﬂ) divisor is the unique D such that on U,, D N Uy = divy, ¢ VA.
The set of all locally principal divisors on X forms a group CDiv(X) C Div(X).

9A Weil divisor is a formal Z-linear combination of irreducible, codimension 1 subvarieties. This is the same kind
of divisor we defined earlier.
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Remark 18.4. If D1 = {Uy,¢,} and Dy = {U,,v,} are two collections of data describing two
Cartier divisors, then their sum D; + Dy is given by {Ux N U, ¢ - ¥}

Remark 18.5. The main advantage to locally principal divisors is that they can be pulled back
under dominant regular morphisms.

Say X 5 ¥ is a dominant regular morphism, so we can identify k(YY) C k(X) by f*. So for
D € CDiv(Y), define f*D as the Cartier divisor X whose local defining equations are the pullbacks
of local defining equations for D.

In symbols, if D = {Uy, v}, then

FD={f71 U, F ()} = {f 7 (Ux),r0 [}
18.2. The Picard group. Let X be a normal variety. Then we have

P(X) C CDiv(X) € CDiv(X) ¥ Div(X).

Definition 18.6. The divisor class group of X is Cl(X) = Div(X)/P(X).
The Picard group of X is Pic(X) = CDiv(X)/P(X).

18.3. Summary of locally principal divisors. Let D be a locally principal divisor on X (nor-
mal).
Then D is given by data {Uy, ¢a}, where the Uy are open sets covering X and ¢ € k(X)*, and
D is div )y on Uy:
DNUy =divy, @x.

Ezample 18.7. D = hyperplane V(x() on X = P3. This is not principal.
4
However, it is locally principal, being given by {(U @>}

Vowi ) fiz1
Note 18.8. (1) The ¢, are uniquely determined only up to multiplication by some ¢ having no

zeros or poles on Uy, or equivalently, any of the following:
e divp=0
* ¢ € O%x(U)
e ¢ is a unit in Ox (U)).

(2) There is a relationship between ¢y and ¢, given by any of the following:

e divpy =divy, on UyxNU,
e divpy —divyp, =0on UyNU,
o div(pr/¢u) =0on UyxNU,.

(Or, if we don’t assume X is normal, ;/¢; € O%(U; NU;).)

18.4. Pulling back locally principal divisors.
18.4.1. Case 1. Let Y i) X be a dominant regular map.

Given D € CDiv(X) = set of all locally principal divisors on X, think of D as given by {Uy, ¢}
Then f*D is given by {f~H(U,), f*(¢x)}. Then we think of f*D as div(f*¢x) on f~1(Uy).

Note 18.9. Each f*p) is a nonzero rational function on Y.
Note 18.10. Supp(f*D) = f~1(Supp D).

Ezample 18.11. Let V = V(y — 2?) C A2, and consider V. — Al, (z,y) — y. Consider the
divisor

(-1 e
D = 2p; — 3py =div (= 2) € CDiv(A%),
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where p; =1 and p» = 2 in A'. Then

(t—1)? =12 (tof—1)?
*(D)=d * =divy ————= =d
fD)=divv § <(t 233 ) ~ TV e —2p TV (ko f—2)?
2
-1°_ . (-1 , :
= div — divy L = 2, + 24, — 3¢2 — 34},
1% (y — 2)3 1% (22 — 2)3 il T 42 43
where
q1 = (17 1)7 qll - (_17 1)7
q2 = (\/55 2)7 q/2 = (_\/57 2)
Note 18.12. Y L5 X is dominant <= on affine charts (say X,Y affine),
kY] +— k[X]
gof<—yg

is injective.
Think: Y i> X yields a map (Ox f—> Oy) = [*Oy, and the kernel is an ideal sheaf ;.

In the affine case, Y i> X induces a map
k[ X] — k[Y]
with kernel I, and we have

<:>Y*>fX

kY] L k[X]
LN
k[X]/I w
Ezxample 18.13.

Pt 2 p3

[s:t] —> [s7: 8%t st? 1 t%]

] $\3 [s5\2 /s
o [(t) (7) '<t>'1]
Let H = V(xq), corresponding to
Zo
Up, ), (U, — | ¢ .
fwon. (52}
Can we pull back H under v?
The pullback v*H is given by

e s ()G}

V*H =3 - P,

SO

where P =[0: 1] € PL.
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18.4.2. Case 2.

Proposition 18.14. If Y T Xisa reqular map, and D € CDiv(X) such that f(Y) ¢ Supp D,
then f*D is defined exactly as before: If D is given by {Ux, pr}, then f*D is given by

{f7HUN), f*er},
where the f*) are nonzero rational functions.

Proof. We have f(Y) ¢ Supp(D) <= Y ¢ f~'(Supp D). Since Supp D consists of the zeros and
poles of Z—i = @y on Uy, i.e., (zeros of hy) U (zeros of g\). Then f~!(Supp D) is the set of zeros of

(hao f) and (gxo f). O

/
Ezample 18.15. Let V =V(y —22) CA2 and D = X — Y = V(z) — V(y) = div (g) on A2, Then
/

We have f*D = f*X — f*Y
18.5. The Picard group functor.

Theorem 18.16. Let X 25 Y be a reqular map of varieties. There is a naturally induced (func-

torial) group homomorphism PicY “ 5 Pic X.
In other words, there is a contravariant functor

{varieties over k} — Ab
X — Pic X.
Ezxample 18.17. The morphism
pt = P
[s:t] —> [33 5%t st? t3]
yields a commutative diagram
Pic(P!) «+—— Pic(P

Z-[p)

[p Z - [H]
]
Z

I~
T 2
Example 18.18. The d-th Veronese map v4 : P™ — P induces

Z = Pic(P™) +— Pic(PN) = Z
d<+—1.
18.6. Moving lemma.

Lemma 18.19. Given any X, a Cartier divisor D on X, and a point x € X, there exists a Cartier
divisor D' such that D ~ D" and x ¢ Supp D.

Ezample 18.20. On P? take z = [1:0: 0] and D = H = V(y). Note that € Supp D.
By the moving lemma, there exists a divisor D' ~ H such that [1: 0 : 0] ¢ D’. We can take

D' = V(z). Heve: D' = D + div (g)
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Proof of moving lemma. Say D is given by data {U;, ¢;}. Say = € Uj.
Let D’ be the divisor corresponding to data {UZ-, gol_l : gpi}. [Note: D' N Uy = divy, (1) is empty,
so x ¢ Supp D'.] Hence
D' =D +div, ¢ L.
O

Proof of Theorem [18.16, Let X “5Y be a morphism and D a locally principal divisor. We can
define ¢*D whenever Supp D 2 ¢(X). Then we need to check also:

(1) D1~ Dy = ¢"Dy ~ ¢"Dy
(2) ¢*(D1) + ¢*(D2) = ¢*(D1 + D)
when we can define @*.

So: if we try to define ¢*[D] where Supp D D im ¢, simply use the moving lemma to replace D
by D', where x ¢ Supp D’ (for any x we pick in ¢). O

19. RIEMANN-ROCH SPACES AND LINEAR SYSTEMS
19.1. Riemann—Roch spaces. Fix X normal, D any divisor. Consider the set
Z(D)={f€k(X)*|divx f+ D >0} U{0} C k(X).
Ezample 19.1. If X = A and D = 2 - py (where py = 0 is the origin), then

2(D) = {f € ko) | div 7 + 2 2 0} U 10} = { 00| ate) € Ko}

A function f € Z(D) can have zeros anywhere, but can’t have any poles except at py, where a
pole can be order 2 or less.

Definition 19.2. (D) is the Riemann—Roch space of (X, D).

Remark 19.3.  (I) Z(D) is a vector space over k.
(IT) Even better, .Z(D) is a module over Ox (X).
The proof follows from a basic fact about “order of vanishing” along prime divisors.

If D; is a prime divisor on normal X, then
vp, k(X)) — Z

is a valuation, i.e.:

(I) VDi(f+g) > min{VDi(f)aVDi(g)}
() vp,(fg) = vp,(f) + vp,(9)-

To prove .Z (D) is a vector subspace of k(X), observe that
f,9e £(D) = f+geZD),
and
divf+D>0
D+ZVDi(9)‘Di =divg+ D >0,

D;
hence divx (f +g) > —D, so if

D= > kD,

D;CX
prime
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then for any D; prime divisor,

vp,(f) > —ki
VDi(g) > —k;.
Thus
vp,(f +g) = min{vp,(f),vp,(9)} = ki Vi,
whence
divx(f +g) = =D,
so f+ge Z(D). O

Theorem 19.4. If X is projective, then £ (D) is a finite-dimensional vector space over k.
Ezxample 19.5. Say D = 0 and
Z(D)={f€k(x)|divf >0} =0x(X).
If X is projective, then £ (0) has dimension 1.
Denote pg = [0 : 1] and poo = [1: 0]. Let X = P! and D = pg + poo. We have k(P!) = k( ),

§
and then
Z(D) = {f <§> ’ div f 4 po + po > 0}
_ {FQ(I',Q)

Ty
2wy v\ _fe oy
xy’xy’xy y7 7:1: 7

19.2. Riemann—Roch spaces, continued. Let X be a normal variety, D = >_ k;D; a divisor.
The Riemann—Roch space

L(D) = {f € k(X)"|divf+D>0}uU{0} Ck(X)

consists of rational functions f such that

‘ F, degree 2 homogeneous} .

A basis for this is

so dim.Z (D) = 3.

(1) f has no poles except possibly along D; if k; > 0 (order of pole up to —k;), and
(2) f must have zeros along D; if k; < 0 (order of zero at least —k;).

Remark 19.6. e Z(D) can be infinite-dimensional or finite-dimensional, though it is always
finite-dimensional if X is projective.
e Z(D) is a module over Ox(X).

Proposition 19.7. If D ~ D', then £ (D) = £ (D') (natural isomorphism, not equality).
Proof. We have D — D' = div f for some f € k(X)*. Consider
{g|divg+D >0} =2(D)-L 2(D) = {h|divh+D >0}
gr—9f
Is gf € Z(D")? Indeed, if g € Z(D), then divg+ D > 0, so
div(gf) + D' =divg+divf + D' =divg+ D > 0.

The inverse map is multiplication by % Thus, this is an isomorphism of k-vector spaces. (It is also
a Ox (X )-module isomorphism.) O
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Note 19.8. Each nonempty open set U C X is a normal variety. Each divisor D = " k;D; on X
induces a divisor

D|, = Zki(Di NU)=“D;NU”.

Look at the Riemann—Roch space of (U , D‘U).

Definition 19.9 (sheaf associated to D). The sheaf Ox (D) associated to D is the sheaf assigning
to each nonempty open set U C X the Riemann—Roch space

Ox(D)(U) = the Riemann-Roch space of (U, D‘U) ,
which is an Ox (U)-module.

e This is a subsheaf of the constant sheaf k(X).
e Ox (D) is a sheaf of Ox-modules.
e If D ~ D', then there is an isomorphism

Ox(D) % Ox (D)
of Ox-modules.
Ezample 19.10. If D = 0, then Ox (D) = Ox.
Ezample 19.11. Let X = P! and D = 2pg — poo (Where pg = [0 : 1] and peo = [1 : 0]). Then
Ox(D)(P') = {f € k(P") | div f + 2py — poo > 0}

_ {y<am+by) ’a,be k}

T2

If we restrict to U, = P\ {[1: 0]}, then using coordinates t = bl

Ox(D)(Uso) = {f € k(P") | divy,, f + 2po > 0}

:{t% gekr[t]}.

Ox(D)(Uo) = {f € k(P') | div f — pos > 0}
:{fek(s)}fES-k[s]}
= {t7" K[t} = Ox(Uh),

. . . _ y _ _1
Similarly, letting s = > =7,

and

Ox(D)(Uso NUp) = Ox(Uso NUp) = k[t, t71].
Fact 19.12. If D is a Cartier divisor, then Ox (D) is a locally free, rank 1 O x-module (a submodule
of k(X)).
Hint: If D is given by data {U;, ¢;}, then

Ox(D)(Uy) = ;- Ox (Uy) € k(X).
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19.3. Complete linear systems. Let X be a normal variety, D = > k; D; a divisor.

Definition 19.13. The complete linear system |D| is the set of all effective divisors D’ on X such
that D ~ D'.

Ezample 19.14. On P? (chark # 3), let
D =3V(2® +y° + 2%) — 7V(z).
Then |D| = the set of all conics on P2
Proposition 19.15. There is a natural map
Z(D) - {0} — [D|
fr—divf+D
which induces a surjective map P(L (D)) — |D| which is bijective if X is projective.

Proof. Why surjective? If D' € |D|, then D" > 0 and D’ ~ D, ie., D' = D + div f for some
fekX)*. So
fr—divf+D=D"
Why injective for projective X? Say Dy, Dy € |D| such that
frgr—div f+ D.

Then div(f/g) =0, so L is regular on X and hence is constant. O

g

19.4. Some examples.

Ezample 19.16 (Case where the map is not injective). Consider X = A! — {0}, D = p = [1]. Then

ZL(D)={fek(t)|divf+p>0}= k[t t7Y,

(- 1)
and the natural map P(Z (D)) — |D| is not injective.
Ezample 19.17. Let L C P? be a line. Say L = V(z¢) C P2. Then
|L| = {lines on P?}
agxo + a1x1 + asxo
zo

:IP’(.Z(L)):IP’{fek(IP’Q)\divf+L>O}:IP’{

aiEk}.

Note that |L| is geometric, independent of choices, while .Z (L) depends on choice of line; if we
choose a different line, we get a different (but isomorphic) subset of k(PP2).

Example 19.18. Let C' C P? be the conic V(F), where F = 2% + 42 — 22. Then
Z(C) ={f€kP?) |divf+C >0}
G(z,y,2)
= {Wﬂ/g_zg) G € [klz,y,2]]y ¢
This is a dimension 6 vector space. Basis:
{x2 ry y? xz 2 yz}

F F' F'F F' F
Map this to the linear system:
Z(C) — |C| = {conics on IP’Q}
G

. G
T div ¥ +C =V(G) (as a scheme)
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The linear system |C| of conics on P? corresponds to a map to projective space (up to choice of
coordinates on that target):

P?---> P
22 xy y? xz 22 yz
. . —r == = = = -
iy 2] [P’ F F F'F 17]

This is the Veronese 2-map.
Note that if we denote L = V(z), then |C| = |2L|, and the corresponding Riemann—Roch space

is
G
Z(2L) = {

.I‘Q

{1 y (y)2 y2}

s o\ T sty o (0
X X X

Note 19.19. The elements of the linear system |C| = |2L| are the pullbacks of the hyperplanes in
PS.

Ge [k[x,y,zng} |

which has a basis

which is also dimension 6.

Multiplying by F', we can also describe this map as

p? 2, p°

iyl — [2% oy y? rmz: 2® iy,
Look at the linear system |H| on P5 of hyperplanes. Say

H =V(agzp + - - + asxs).

Then
VsH = V(agx® + ayzy + - + asyz).

19.5. Linear systems.

Definition 19.20. A linear system on X is a set of divisors (all effective, all linearly equivalent
to each other) which corresponds to some (projective) linear space in some complete linear system

|D|.
In other words: Fix D, and consider a subspace
Then we have a map V' — P(V) C |D|. The image of P(V') is a linear system.
Ezample 19.21. In P", take the set of lines through a point p=1[0:---:0: 1] € P". Fix H = V().
Call this set
V=PV)={f|divf+H=>0}.

V:<spanof$0,...,xn1>§$(H):<xo o ...,xn1,1>.

) )
Tn Tn Tn Tn Tn

Then

Definition 19.22. The base locus of a linear system V is the set
BSV:{x€X|x€SuppDVDEV}.

A linear system is base point free if BsY = @.
The fixed components of a linear system are prime divisors D such that D appears in the support
of every D € V (i.e., divisors in the base locus).
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Ezample 19.23. Fix L1 = V(x) C P2. Take the linear system V of conics in P? which contain
Lq. This consists of the unions of L1 with another line, and the double line consisting of L with
multiplicity 2.

We have

|2L2| DV +— |L]
L1+ Ly +— Lo.
A conic C' C P? contains Ly = V(z) iff
Io = (F) = (az+ by +cz)x C I, = (x).

A basis for F is given by
2

rory Er
F’"F’F°
Map to projective space by
P2 ---> P2
2
x° xy xZ
[x:y: 2] — [F:F F} =[z:y: 7,

i.e., the identity map.
19.6. Linear systems and rational maps.

Theorem 19.24. Let X be normal (in practice, projective). There is a one-to-one correspondence

{rational maps X --->P"} { n-dimensional linear systems of divisors on }
(projective change of coordinates) X with no fized component

[X - ]P’”} — {pullback of hyperplane linear systems on P"} .

Ezxample 19.25. Consider the map
pt = P
[s:t] —> [53 %t st? t3]
and the linear system
|H| = {hyperplanes on Pg} = {V(az + by + cz + dw) } [a:b:c:d| € IP’3}.
Then
v H| = {v"(V(az + by + cz 4+ dw)) | [a:b:c: d] € P}
= {V(as® + bs’t + cst® + dt*) }
= {complete linear system on P! of degree 3 divisors} = |3P|.

Going back to the theorem, for any m-dimensional linear system V of divisors on X with no
fixed component, let |D| be a complete linear system such that V C |D|. Then V = P(V), where
V C Z(D) is (n+ 1)-dimensional. Send

y X --->P"
— ,
x— [po(x) - on(2)]
where the ¢; are a basis for V.
Furthermore: the locus of indeterminacy of ¢ is the base locus of V.
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Ezample 19.26. In P2 fix a line L. Look at the linear system Wj C |C3| (where |C3| is the

9-dimensional complete linear system of cubics in P?) of cubics that contain L. We have
LC(C3 < F3=ux-F>,

where Fy(x,y, z) is degree 2. So

3(03): $3I27y273 2 x.xQ:x'xy:$.xz:x‘y2:$.yz:x‘22 .
F3;  Fj F3 F3 F3 F3 F3 F3 F3
What is the map ¢yy, corresponding to W7 It is
P?--->P°
3.2 2
x° Ty xz 9 9
YR s e | = : Teee .

[x:y: 2] [FS 2 2 ] (2% : 2y 2%

Note that Wy, gives the same map as |Cy|.
Note 19.27. Let X ---> oP™ and D € Div(P"™). What is ¢*D? We have

X-Zapn
s
U

and X \ U has codimension > 2. Then

@D < gD,

the unique divisor D’ on X such that D'|,, = (¢; D).

n+d
Ezample 19.28. In general, the Veronese map P" v, p("i) -1 corresponds to the complete linear

system |dH| on P".

Definition 19.29. A divisor D is very ample if the map ¢|p| : X --->P" corresponding to the
complete linear system |D| is an embedding.
A divisor D is ample if 3m € N such that mD is very ample.

Example 19.30. Consider the projection
P3 - > p?
[x:y:z:w]—[z:y: 2]

fromp =[0:0:0:1]. Let H = V(ax + by + cz) € |H|. Then hyperplanes H correspond to
hyperplanes on P? which contain p, i.e.,

|Hp| = linear system on P? of hyperplanes through p.
This is fixed component free, since the base locus is {p}, the locus of indeterminacy of .

Ezample 19.31. Let P2 = P2 be the blowup at a point p € P2.

This corresponds to the linear system 7 |L| (where |L| is the complete linear system of lines on
P2), which includes “lines” L which don’t meet the exceptional divisor E.

This is base point free, but not very ample.
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20. DIFFERENTIAL FORMS
20.1. Sections. Recall from the homework: The tautological bundle is
T={(z,0) |wet} Tk xP"
with the projection map 7' — P™. The fiber
710 = {(z,0) | z € ¢}

is the set of points in the line which is £.

A section is a morphism P - T such that 7o s = id }IP’"‘ A section of the tautological bundle
is given by a choice of representative of each line, i.e., for all £ € P", s(¢) € 7~ 1(¥).

We can add two sections s1, s2 : P* — T by adding outputs:

§14+89: P — T
C— s1(L) + s2(0).
We can also multiply a section s : P — T by any function f : P* — k:
fs:P"—T
fs(0) = f(0)s(6) € = (0).
20.2. Differential forms.

Definition 20.1. A differential form 1 on X is an assignment associating to each x € X some
P(x) € (TX)".
Put differently, a differential form is a section of the cotangent bundle of X.

Ezample 20.2. If f is a regular function on X, then df is a differential form:
ofi
8.21;‘Z'

T XCT A™"

df(z) = dof =)
=1

We can add two differential forms:

(V1 + ¥2)(2) = ¢1(x) + Pa(z).
Can also multiply ¢ by any k-valued function ¢:
() (z) = p(x) - ().

In other words, the set of all differential forms ¥[z] on X forms a module over §(x), the ring of
all functions on X.

Ezxample 20.3. Consider A" with coordinates x1,...,x,. The cotangent space at x is spanned by
dxl‘l, ey dmxn.

Ezample 20.4. In R?, sinx dy + cosz dr € ¥[z] is a differential form.
20.3. Regular differential forms.

Definition 20.5. A differential form v on X is regular if Vx € X, there is an open neighborhood
U > z such that 1[J|U agrees with Zle gidf;, where f;, g; € Ox(U).
In other words, viewing 1) as a section of the cotangent bundle of X, the section map is regular.

Example 20.6. The differential form
Y =2z d(zy) = 2z (xdy + ydz) = 22 dy + 2xy dx

is a regular differential form in AZ.
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Notation 20.7. For U C X open, let Qx(U) be the set of regular differential forms on the variety
U.

Note 20.8. Qx(U) is a module over Ox (U). In fact, Qx is a sheaf of Ox-modules.
Ezxample 20.9. On A", Qx is the free Ox-module generated by dx1,...,dz,.
Theorem 20.10. If X is smooth, then Qx is a locally free Ox-module of rank dim X.

Proof sketch. Take x € X, and take local parameters z1,...,x, at x. Show that dx1,...,dz, are
a free basis for Qx in some neighborhood of . (Use Nakayama’s lemma.) O

Proposition 20.11. Let V. C A" be an affine variety with ideal I(V') = (g1,...,9+) C k[A"]. Then
Qy (V) is the Oy (V)-module

k[V]day|, + -+ k[V] day|,,
k[V]-submodule generated by (dgi,...,dgt)

Note that if g vanishes on V', then dg =0 on V.
Ezample 20.12. Let V = V(¢ — s?) C A2 Then

k[V]dt + k[V]ds

Q =
v (dt — 2sds)

This is free, since dt = 2sds in Qy, so the generator dt is redundant, and Qy = k[V]ds.

Example 20.13. Consider P! with homogeneous coordinates x,y, and with t = %, 5= % Say 9 is
a global regular differential form on P'. Then

w‘Uy € Qp1 (Uy) = k[t] dt
w‘Uz € Qp1(Uy) = k[s] ds.

If we have p(t) dt € k[t] dt and q(s) ds € k[t] dt, then
p(t) dt = q(1/t) d(1/t)
on U, NUy. Then

p(t)dt = ~a(1/0)%.

SO

t*p(t) = —q(1/t)
in k[t,t~1]. Thus p = ¢ = 0, i.e., there are no nontrivial global regular differential forms on P!.

However, on X = V(23 + 9% + 23) C P2, there is a 1-dimensional k-vector space of global
differential forms. And, on X = V(2% + y* + 2%) C P2, the space Qx(X) is 3-dimensional over k.

Definition 20.14. If X is a smooth projective curve, then the genus of X is the dimension of
Qx(X) as a k-vector space.
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20.4. Rational differential forms and canonical divisors. A rational differential form on X
is intuitively fidgi + - - - + frdg,, where f; and g; are rational functions on X. Formally:

Definition 20.15. A rational differential form on X is an equivalence class of pairs (U, ¢) where
U C X is open and ¢ € Qx(U). [As with rational functions, (U, ¢) ~ (U’,¢') means @’UQU' =
' lyowr]

We can define the divisor of a rational differential form.
Definition 20.16. If w is a rational differential form on a smooth curve X, then div(w) € Div(X)
is called a canonical divisor.

The canonical divisors form a linear equivalence class on X, denoted K x. Also,

dim .Z(Kx) = genus(X).

Example 20.17. On P!, the canonical divisor Kp: is the class of degree —2 divisors.
20.5. Canonical divisors, continued. Let X be smooth (or, X normal, and work on Xy, C X;
since codim(X \ Xgn) > 2, we won’t miss any divisors).

Consider the sheaf Qx of regular differential forms on X. [In U, Qx(U) is the set of differential
forms ¢ on U such that Vo € U, there exists an open neighborhood where ¢ agrees with > f;dg;,

where f;, g; are regular functions.]
The sheaf Qx is a locally free Ox-module of rank d = dim X.

Fact 20.18. The set of rational differential formﬂ forms a vector space over k(X).

Definition 20.19. A separating transcendence basis for k(X) over k is a set of algebraically in-
dependent elements {u;} over which k(X) is separable algebraic [i.e., k(uy,...,u,) — k(X) is
separable algebraic].

Example 20.20. Consider X = P2, Then

k <‘“> =5 k(P),
yy

so £ 2 ig a separating transcendence basis. In characteristic # 2, 3,

Yy
2\ [2\? T z
(G)-G) )=+ G)
Y Y vy
is also a separating transcendence basis.

Theorem 20.21. Ifuq,...,u, is a separating transcendence base for k(X), then duy, ... ,duy is a
basis for the space of rational differential forms on X over k(X).

Proof sketch. We have k(uy,...,u,) < k(X). Given > f;dg; with f;, g; € k(X), it suffices for each
g = gi € k(X) that we can write
dg = riduy + - - - + rpduy,
for r; € k(X).
Then g satisfies a minimal polynomial

9"+ ag™ e am, =0
with a; € k(uy,...,u,). Apply “d”:

mg™ g + g™day + ay - (m — 1)g™ 2dg + - - - + day, = 0. *)

10ghafarevich denotes this ©(X).
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Solve for dg;:
(rational function)dg € k(X)-span of duy, ..., duy.

(Check the coefficient on dg is not zero if (*) is separable.) So dg € k(X)-span of dug,...,du,. O

20.6. The canonical bundle on X. For each p € N, look at the sheaf AP Qx of p-differentiable
forms on X, which assigns to open U C X the set of all regular p-forms: Vo € U, o(z) : NP T, X —
k. Locally these look like ) fidgi, A--- A dg;,.

Rational p-forms are defined analogously.

Corollary 20.22. The set of rational p-forms on X is a k(X )-vector space of dimension (;)

Proof. If uy,...,uy is a separating transcendence basis, then {dui1 A A duip} is a basis for ra-
tional p-forms over k(X). O

Definition 20.23. The canonical sheaf (or dualizing sheaf) of X (where X is smooth, dim X = n)
is

wx = /\Qx.

Note 20.24. (1) wx is locally free of rank 1.
(2) The set of rational canonical (n-)forms is a vector space of dimension 1 over k(X).

Example 20.25. On P2, let s = % and ¢t = 5, and consider

ja(2)ra(2)
oD ra()=a()ra})

<t ds — sdt> (=)

We have

12 12
_ —tdsANdt  —dsAdt
- t4 - 3 :
On U, there are no zeros or poles. On U,, we have a pole of order 3 along ¢t = 0 (the divisor
V(z) C P?).
So:

v (4(2) ra(2)) = -5

Definition 20.26. The divisor of a rational canonical form ¢ on X is the divisor

div(p) = Y wp(e)D,

D prime
divisor

where Lo, = V(z) C P2

where vp(p) is computed as follows: Pick any wuq, ..., u, parameters for a point z € D. Write
p=f-dug A -\ dug,
where f € k(X). Then vp(y) = vp(f).
Note 20.27. The divisor div(w) is not necessarily principal.
Proposition 20.28. For all f € k(X), w a rational canonical form,
div(fw) = div(f) + div(w).

In particular, any two rational canonical forms define the same divisor class.
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Definition 20.29. The divisor div(w) is called a canonical divisor. By Proposition [20.28| they
form a class, called the canonical class Kx.

Example 20.30. On P2, Kp2 is the class of divisors of degree —3.

We can use the canonical class (or multiples of it) to classify varieties.

If we embed

dK
Xcl x| pr

AY|

Y
then X 2Y <= there is a projective change of coordinates taking X to Y.
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blowup, @
along a subvariety, @
at a line, [49]

at a point, [7]

canonical class,
canonical sheaf, [70]

closed sets, [

cofinite,

complete linear system,

conic, [23]

coordinate ring,

derivation,
differential,
differential form, [67]

rational, [69]

regular, [67]
dimension,
discrete valuation ring,
divisor,

ample,

canonical,

Cartier, [56]

effective, 0]

locally principal, [56]

of zeros and poles,

prime, [50]

principal,

support of,

trivial,

very ample, [66]

Weil, 56|
divisor class group,
domain of definition,

of a rational map,
dualizing shealf, [70]

embedding dimension, @

family,

finite map,

fixed components, [64]

function field,
of a projective variety, [27]
of a quasi-projective variety, 28|
of an affine variety, 27]

genus, [6§|
graph,

of a rational map, [47]

height of a prime,
homogeneous ideal, [TH]

of a projective algebraic set, [T5]
homogenization,
hyperplane,
hyperplane section,
hypersurface, [20]

ideal of an algebraic set, |§|
ideal sheaf, [41]
image of a rational map, [7]
intersection multiplicity,
irreducible algebraic set, |Z|
irreducible components, |Z|
irreducible space, [f]
irrelevant ideal, [T5]
isomorphism
of affine algebraic sets, [J]
of varieties,

linear system,

local parameters,

local ring of a variety, [37]
locus of indeterminacy, [44]

members of a family, [31]

Noetherian, @
normal
ring, [54]
variety, [55]
normalization,

order of vanishing,

parameter space, [31]

Picard group,

prime ideal, m

projection, [I7]

projective algebraic subset, [T4]
projective closure, [TH]
projective map, [49]

projective space, [[3]

proper map,

quasi-projective variety, [I§]

radical,
radical ideal, |§|
rational function, [T2]
rational map, 3]
reduced algebra,
regular function,
on a quasi-projective variety, @
regular local ring, [38]
of a variety, 38|
regular map
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of quasi-projective varieties,
regular mapping,
regular parameters,
regular point

of a rational function, [[2]

of a rational map,
Riemann—Roch space,

section, [67]

Segre map, [22]
separating transcendence basis, [69]

shealf, [I0]
associated to a divisor,
singular locus, [3§]

smooth point, [35] 3§

standard charts,

tangent line, [34]

tangent space, [34]
tautological bundle, @
topology, [
transcendence basis, [27]
transcendence degree,
twisted d-ic, @

Veronese map, [I6] 20]

Zariski tangent space,
of a local ring, [3§

Zariski topology,
projective, [[f]
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